Artellie.ru

Дизайн интерьеров
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

О настройке смещения

О настройке смещения

Вопросы, связанные с настройкой смещения выходных ламп в усилителях и необходимостью проведения этой процедуры при замене ламп, задаются постоянно. Кому-то действительно интересно, чтобы его аппарат работал надлежащим образом, кто-то считает техобслуживание сплошным «разводом». Каждому свое, так и будет.

Не удивительно, что существует большое количество пользователей, которые вообще не представляют себе что это за смещение такое, где оно живет и зачем вообще нужно. Поэтому можно было бы начать издалека. Я же считаю, что важнее обозначить проблему, обратить на нее внимание. А потом можно и ликбез некоторый дать тем, у кого возникают соответствующие вопросы.

Со времен «золотой эры» ламповой техники пошло мнение, подкрепляемое воспоминаниями старшего поколения, что в ламповом усилителе ничего настраивать якобы не требуется, просто заменил выходные лампы на новые и все отлично работает. Причина, по которой это «канало», проста – консистентность ламп, которая была следствием высокой культуры их производства в те годы. То есть, на заводе усилитель был настроен под определенные лампы с некоторым запасом, необходимым для обеспечения надежной работы, и купленные новые лампы подходили как «родные». На чем основана уверенность, что сегодня это непременно «проканает»?

Давайте проанализируем возможные варианты.

Допустим, в усилителе смещение настроено достаточно «холодно», тогда любая годная лампа соответствующего типа в этом усилителе окажется в допустимом режиме. Просто устанавливаем точно подобранную пару новых ламп вместо старых. Хорошо? Не всегда. Если лампы окажутся в слишком облегченном, обедненном режиме, то усилитель не реализует свой звуковой потенциал. Особенно это заметно на маленькой громкости, звук тонкий, зудящий, вялый.

Или допустим иной вариант, что смещение было настроено конкретно под предыдущую пару ламп. Тогда в случае простой замены возможен как слишком облегченный режим работы новых ламп (см. выше), так и слишком «горячий», тяжелый режим, что, скорее всего, закончится аварией.

Это наиболее типичные случаи (при в общем-то годных лампах), наблюдающиеся у большинства поступающих на обслуживание гитарных усилителей.

Очень часто о звучании ламп различных марок судят по результатам прослушивания, при котором лампы просто перетыкают без надлежащей настройки смещения. Видимо, слушают насколько конкретный комплект ламп подходит к случайной настройке или насколько данный комплект «косячный». Очевидно, что ценность таких «прослушиваний» весьма сомнительна.

Ни в коем случае не пытайтесь настраивать смещение «на слух»!

Какая настройка смещения выходных ламп требуется для правильной работы усилителя? Необходимо установить такой ток покоя, при котором лампа рассеивает половину максимально допустимой для нее мощности. Теоретически можно «высадить» на лампе до 70% допустимой мощности, и так даже будет лучше для звука, особенно на малой громкости… но практически следует ограничиться 50%.

Теперь о том, в каких случаях можно самостоятельно пытаться настраивать смещение.

Если аппарат имеет выведенный наружу шасси регулятор смещения и контрольные точки, если в предоставляемом производителем усилителя руководстве пользователя есть пошаговое описание этой процедуры, тогда это можно делать самостоятельно. Даже наличие контрольных точек необязательно, можно специальным воспользоваться зондом-переходником.

Если же снаружи шасси нет доступа к регулятору смещения и вы не являетесь квалифицированным специалистом (или хотя бы достаточно опытным радиолюбителем) – лучше не суйтесь внутрь аппарата. Например, у «классических» усилителей Marshall 2203 и SuperLead регулятор смещения расположен внутри шасси, причем так, что при его вращении отверткой легко по неосторожности угодить рукой в анодный выпрямитель, а там ни много ни мало 460В.

Ликбез

Лампа рассеивает (превращает в тепло) мощность, равную сумме произведений токов, протекающих в цепи каждого электрода, на напряжения на соответствующих электродах. Сюда же можно добавить мощность, потребляемую подогревателем (нитью накала). Обычно при настройке аппарата учитывается только мощность, рассеиваемая анодом лампы. Чем больший ток протекает в цепи анода лампы при заданном напряжении на нем и остальных электродах, тем большая мощность рассеивается на аноде, превращаясь в тепло, и тем лампа горячее, соответственно, режим тяжелее.

Смещение это напряжение на управляющей сетке относительно катода лампы, с помощью которого задается режим работы лампы. В гитарных усилителях (и вообще большинстве ламповых звуковых усилителей) это напряжение отрицательное. Способы получения и подачи этого напряжения могут быть разными, наибольшее применение нашли так называемое «автоматическое» смещение (автосмещение, «катодное» смещение) и фиксированное смещение.

Автоматическое смещение обычно получается в результате протекания тока через резистор, включенный между катодом лампы и общим проводником схемы (т. н. «землей»). Примеры такого решения: VOX AC30, Laney LC30, Peavey Classic 20, Kustom Coupe’72, Matchless Chieftain (также Clubman, DC30) и т. д. Фиксированное смещение подается непосредственно на управляющую сетку. В большинстве гитарных усилителей это напряжение может настраиваться, исключением являются все модели Mesa/Boogie, Fender ProJunior, Marshall JTM30, Peavey Classic 30 и другие.

Что такое ток покоя лампы

Режимы работы усилительных приборов. Классы усилителей

Читайте так же:
Регулируемый выключатель для ламп накаливания

Понятие режима работы или класса усилителя определяется соотношением анодного тока покоя к величине тока сигнала и формой анодного тока. До сих пор во всех примерах рассматривались усилители класса А, хотя данный факт до сих пор никак не акцентировался. Для исправления указанного упущения необходимо ввести некоторые определения.

Режим класса А

При этом режиме величина анодного тока покоя всегда задается такой, чтобы даже при минимально возможном значении входного сигнала (а также и при его отсутствии) анодный ток не снижался до нулевого значения. Иными словами, лампа, работающая в классе А, никогда не запирается. Если на вход (управляющую сетку) такого каскада усиления будет подано синусоидальное напряжение, форма анодного тока также будет синусоидальной. Режим класса А характеризуется наилучшей линейностью усиления, однако по энергетической эффективности он самый плохой. Теоретическое значение максимального КПД при синусоидальной форме выходного сигнала в режиме класса А равно 50%. Наиболее простое тому объяснение — большой ток покоя, существующий даже при полном отсутствии входного сигнала. Низкий КПД кроме очевидного высокого энергопотребления, неудобен тем, что на анодах ламп рассеивается повышенная тепловая мощность, что уменьшает максимально достижимую полезную мощность, отдаваемую ими.

Режим класса В

В этом режиме ток покоя равен нулю, а сам анодный ток протекает только при действии положительной полуволны входного сигнала. Таким образом, лампа заперта в период действия отрицательной полуволны входного сигнала. Так как входной сигнал фактически претерпевает однополупериодное выпрямление, в сигнале возникают существенные искажения в виде гармоник. Для решения данной проблемы приходится принимать дополнительные меры (применение двухтактных схем усиления). Однако, в режиме класса В анодный ток существует при любом значении амплитуды входного сигнала, что не нарушает линейности амплитудно-амплитудной характеристики усилителя. Теоретическое значение максимального КПД (при полном использовании лампы по напряжению и току, что на практике недостижимо) при синусоидальной форме выходного сигнала в случае двухтактного усилителя класса В составляет 78,5%. Это напрямую связано с отсутствием тока покоя.

Режим класса С

В режиме класса С время протекания анодного тока меньше времени действия положительной полуволны входного сигнала. Данный метод используется только в ВЧ усилителях радиопередатчиков, в которых могут использоваться резонансные методы восстановления основной гармоники сигнала. Это режим характеризуется гораздо более высокими значениями КПД и уровнем искажений по сравнению с применяемым в усилителях режимом класса В.

Угол отсечки. Режим класса АВ

Для характеристики длительности той части полупериода, в течение которой протекает анодный ток, радиоинженеры используют термины угловая длительность импульса и угол отсечки. Под угловой длительностью импульса тока понимается часть периода (выраженная в радианах), в течение которой существует анодный ток. Под углом отсечки (наиболее часто применяемом для количественного описания режима работы усилительных приборов) понимается половинное значение этой длительности. Используя данный термины, и учитывая, что полный период гармонических колебаний равен 360°, можно сказать, что для усилителей класса А длительность импульса тока равна целому периоду (ток непрерывен), а угол отсечки равен 180°. Для усилителей класса В угол отсечки составит 90°, а для усилителей класса С он составляет менее 90°.

Так как переходная область между классом А и классом В в их чистом виде достаточно обширна, то ввели промежуточный класс усилителей, известный как режим класса АВ, где анодный ток существует более полупериода, а угол отсечки превышает 90°, но не достигает 180°.

На рис. 7.4 приведена идеализированная проходная характеристика лампы (считая проницаемость равной нулю). Как видно из рисунка, режим работы усилителя (определяемый формой анодного тока) зависит от напряжения смещения на сетке лампы. В режиме класса А смещение выбирается на середине линейного участка проходной характеристики, благодаря чему анодный ток существует весь период действия входного (сеточного) напряжения. В усилителях класса В напряжение смещения выбирается равным напряжению отсечки проходной характеристики лампы, что запирает ее при всех более отрицательных напряжениях. Поэтому только во время действия положительного полупериода входного сигнала обеспечиваются условия для существования анодного тока. В режиме класса С напряжение смещения выбирается более отрицательным, чем напряжение отсечки лампы. Чем более отрицательное смещение выбрано, — тем меньше будет угол отсечки. Для получения режима класса АВ, наоборот, смещение выбирается менее отрицательное, чем напряжение отсечки. В этом случае, чем менее отрицательное смещение выбрано, тем больше будет угол отсечки.

Режимы классов АВ1 и АВ2

В аудиотехнике, как правило, вводят дополнительную классификацию режимов АВ, опираясь на наличие или отсутствие тока управляющей сетки.

Режимом АВ1 считается режим класса АВ, при котором ток управляющей сетки не существует. Большая часть мощных (свыше 50 Вт) классических усилителей представляют собой двухтактные усилители класса АВ 1.

Соотношение между формой входного сигнала и анодным током для усилителей классов А, В и С

Рис. 7.4 Соотношение между формой входного сигнала и анодным током для усилителей классов А, В и С

Читайте так же:
Ток люминесцентной лампы с эпра

Режимом АВ2 считается режим, при котором входной сигнал создает положительный относительно катода потенциал на сетке, что создает условия для протекания сеточного тока. Это увеличивает эффективность работы, так как при этом условии остаточное анодное напряжение может в большей степени приближаться к нулевому значению, что особенно важно при работе триодов. С началом протекания сеточного тока входное сопротивление выходного каскада катастрофически падает (в соответствии с соотношением 1/gm) и в этих условиях для задающего каскада должно выполняться требование иметь очень низкое выходное сопротивление, чтобы обеспечить передачу обработанного сигнала в эту исключительно нелинейную нагрузку без искажений. Единственным способом снизить влияние этого дополнительно возникающего источника искажений является применение сеточного резистора утечки с низким значением сопротивления, который пропускал бы больший по величине ток сигнала по сравнению с ожидаемым сеточным током; таким образом, в момент, когда протекает сеточный ток, относительное изменение тока нагрузки (а, следовательно, и вызываемые его наличием нелинейные искажения) будут небольшими. Для некоторых современных усилителей с несимметричным выходом разработчиками также заявлен класс работы А2.

Далее будет показано, что эффективность работы усилителя может быть повышена только за счет улучшения линейности его характеристики.

Как было показано, работа однотактного каскада в режиме класса В вносит значительные искажения за счет однополупериод-ного усиления входного сигнала, что приводит к появлению высших гармоник. Естественно, это является весьма существенным недостатком для высоко-качественных усилителей Hi-Fi, для которых требуется высокая линейность характеристик.

Теперь предположим, что имеется две лампы, работающие в режиме класса В, на одну из них подается непосредственно входной сигнал, а на другую подается инвертированный (то есть противофазные ему) сигнал. Во время интервала t1 проводит ток верхняя лампа, тогда как вторая заперта. Во время интервала t2 ситуация меняется на обратную (рис. 7.5).

Таким образом, положительные и отрицательные полуволны входного сигнала вызывают анодный ток попеременно в разных лампах, в результате чего, в любой момент времени в какой-либо из двух ламп анодный ток будет существовать. Путем инвертирования одного из выходных сигналов и сложением его с другим сигналом в выходном трансформаторе можно восстановить исходную форму входного сигнала. Инвертирование выполняется путем изменения направления протекания тока в одной из обмоток, то есть изменением полярности подключения этой обмотки трансформатора. На диаграмме они обозначены соответствующими значками « + » и «—». На принципиальных схемах для обозначения направление намотки зачастую начальные витки обмоток трансформатора обозначаются точками.

Вне зависимости от того, достигается этот результат использованием трансформатора, либо непосредственным последовательным включением ламп усилителя, такого, например, как катодный повторитель Уайта, данная схема подключения получила общее название — двухтактная схема, и она является единственным путем для достижения хорошей линейности характеристики в усилителях класса В, обеспечивающих гораздо более высокий КПД, нежели в классе А.

Неудивительно, что такое разделение сигнала и затем его последующее восстановление в исходном виде не является вполне безболезненной операцией и поэтому усилители класса В в чистом виде используются достаточно редко из-за искажений, возникающих во время переходного процесса в цепях кроссовера (фазоинвертора), когда усиление сигнала передается от одной лампы к другой. На практике допускается протекание небольшого тока покоя лампы с целью уменьшить влияние переходного процесса, что приводит к режиму работы в классе АВ. Теоретическое значение оптимального напряжения смещения для усилителя класса АВ находят путем экстраполяции линейной части передаточной характеристики до ее пересечения с осью входных напряжений V k. Однако на практике лампы не обладают идеальной линейной характеристикой, и в них не наблюдается безинерционного, резкого запирания, следовательно, индивидуальные особенности характеристики каждой лампы приводят к тому, что идеальная точка смещения не является соответствующей реальному положению дел и искажения, возникающие в кроссовере, не устраняются.

Тема: Выравнивание токов покоя PP лампового усилителя.

Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от eduard.petrash

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от stan marsh

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от DIM

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы
Читайте так же:
Схема подключения лампочки через выключатель без распределительной коробки

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

От опера с парафазным выходом, включенным по схеме интегратора, до банального диффкаскада с коллекторами на смещение

———- Сообщение добавлено 10:54 ———- Предыдущее сообщение было 10:53 ———-

Сообщение от Игорь Тихомиров

И когда левая улетает в разгон, правая улетает следом. Уже писал.

———- Сообщение добавлено 11:06 ———- Предыдущее сообщение было 10:54 ———-

Сообщение от Игорь Тихомиров

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от fakel
Сообщение от fakel

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от Игорь Тихомиров

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от eduard.petrash

А откуда там сумма берется?

Два напряжения через 1к резисторы на неинв. вход ОУ — это не сумматор.

Сообщение от Игорь Тихомиров

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Выравнивание токов покоя PP лампового усилителя.

Сообщение от КСИВ

Да, Вы предлагаете несложный вариант когда одна лампа работает как работает а режимы другой подстраивают под режим первой ( как и в посте 11 выше).
Несомненный выигрыш Вашего варианта в простоте, но , как отмечалось выше , — при разгоне и выходе из режима первой лампы, туда же уходит и вторая.
( Конечно явный выход из режимов можно контролировать отдельно и он бывает крайне редко.)

———- Сообщение добавлено 17:11 ———- Предыдущее сообщение было 17:09 ———-

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Выходной каскад усилителя – весьма нелинейный узел. И снижение его искажений очень хорошо отразится на работе усилителя и на его качестве звучания. Самые низкие искажения выходного каскада будут, конечно же, в классе А. Вот только греться выходные транзисторы при этом будут очень сильно. Чтобы снизить их нагрев обычно снижают напряжения питания. А это повышает искажения полевиков. И, главное, снижает максимальную выходную мощность усилителя. Значит появляется опасность возникновения клиппинга. То есть стремление улучшить звук, приводит к возможности его сильного ухудшения.

Что же делать? А нельзя ли найти такой ток покоя выходных полевых транзисторов, чтобы и искажения были маленькими, и нагрев небольшим?

Известный разработчик звуковой техники Дуглас Селф в книге «Проектирование усилителей мощности звуковой частоты» писал, что для низких искажений ток покоя выходного каскада на биполярных транзисторах должен быть как раз маленьким, выходные транзисторы должны работать в классе В. То есть греться минимально. Однако для выходных полевых транзисторов невозможно теоретически указать оптимальное значение тока покоя, при котором искажения выходных полевых транзисторов были бы минимальны.

Я усомнился в том, что оптимального тока покоя для полевых транзисторов не существует вообще. Какая-то оптимальная величина тока покоя, которую можно рекомендовать устанавливать в УМЗЧ, должна быть. Чтобы и качество высокое, и нагрев небольшой. Поэтому провел экспериментальную проверку влияния тока покоя выходного каскада на его искажения. Для этого я применил такую систему. Собрал высококачественный усилитель с полевыми транзисторами на выходе, по топологии Лина. Для того чтобы легче было измерять величину искажений, глубина общей ООС была уменьшена на 30 дБ. С целью линеаризации каскада усиления напряжения усилителя, вносящего наибольшие искажения, в него была введена местная ООС глубиной 12 дБ. Такая модернизация позволила более четко выделить искажения, вносимые выходным каскадом усилителя.

Итак, перед вами результаты реальных измерений на настоящем усилителе.

Цель оптимизации – получить достаточно низкие искажения, вносимые выходным каскадом при сравнительно небольшом токе покоя, а значит и нагреве выходных транзисторов.

С целью всестороннего изучения искажений, вносимых выходным каскадом, измерялись следующие виды искажений такого специализированного усилителя:

— коэффициент интермодуляционных искажений, использующий стандартный метод SMPTE с частотами 60 Гц и 7 кГц и соотношением амплитуд 4:1;

— коэффициент гармоник, нормированный к номеру гармоники k, вычисленный для первых одиннадцати гармоник:

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Этот коэффициент используется сравнительно редко. Однако в нем есть необходимость, так как этот коэффициент учитывает не только величину гармоники, но и ее номер. Чем больше номер, тем больше коэффициент. Известно, что чем выше номер гармоники, тем более она заметна и неприятна на слух. В результате нормированный коэффициент гармоник не только вычисляет искажения, он позволяет учесть ширину спектра искажений и хоршо отображает «неприятное звучание» высших гармоник. Этот параметр гораздо сильнее связан с субъективным качеством звучания, чем «обычный» Кг. Но нормированный Кг непривычен — его практически не используют (потому что он более честно показывает искажения, а производители хотят красивых рекламных чисел). Поэтому для сравнения спектров вычислялся коэффициент, который можно назвать «фактор спектра» (ФС):

Читайте так же:
Почему мигает лампа выключатель выключен

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Фактор спектра показывает ширину спектра искажений. Если в спектре присутствует только вторая гармоника, то ФС=1. Бо’льшие значения ФС соответствуют присутствию в спектре искажений большего числа высших гармоник. На рис. 1 показана зависимость фактора спектра от ширины спектра сигнала (график на рис. 1 построен по результатам проведенных измерений). Здесь показаны только первые одиннадцать гармоник, а вообще реальный спектр искажений при больших значениях фактора спектра содержал гармоники значительной амплитуды вплоть до двадцатой!

Для измерений использовалась звуковая карта EMU-0404 и последняя версия программы SpectraPLUS. Коэффициенты гармоник и интермодуляционных искажений вычислялись программой по встроенным алгоритмам. Нормированный коэффициент гармоник вычислялся на основе амплитуд гармоник, выдаваемых программой.

Исследовались наиболее популярные мощные комплементарные транзисторы, устанавливаемые в выходной каскад усилителя:

IRFP240/IRFP9240 фирмы International Rectifier;

2SJ201/2SK1530 фирмы Toshiba;

2SJ162/2SK1058 фирмы Hitachi.

Во всех случаях измерялись две-три пары однотипных транзисторов. Результаты не усреднялись, но разброс результатов для однотипных транзисторов был несущественным. В пары транзисторы не подбирались.

Измерения производились для двух типов нагрузки: активной, сопротивлением 6 ом и сложной комплексной, имитирующей реальные акустические системы.

Искажения выходных транзисторов на активной нагрузке показаны на рис. 2 — рис. 4.

Хорошо видно, что при увеличении тока покоя величина искажений, вносимых выходным каскадом, снижается. Вместе с искажениями снижается и значение фактора спектра. Это означает, что в спектре искажений снижается содержание гармоник высоких порядков, что положительно сказывается на звучании усилителя, воспринимаемом на слух. При условии, что выходной каскад остается работать в классе АВ, можно легко найти оптимальный ток покоя, при котором искажения невелики и при увеличении тока снижения искажений практически не происходит. Оптимальный ток получается равным 300 мА для транзисторов IR, 200 мА для транзисторов Toshiba и 120 мА для транзисторов Hitachi. Интересно, что последние транзисторы значительно отличаются по величине искажений. Надо сказать, что они отличаются и по работе на постоянном токе, для обеспечения работы этих транзисторов пришлось переделывать цепь смещения усилителя.

Искажения выходных транзисторов при работе на комплексную нагрузку показаны на рис. 5 — рис. 7.

Для комплексной нагрузки также характерно наличие оптимальной величины тока покоя, близкой по значениям к оптимальным величинам тока на активной нагрузке.

Интересно отметить, что при увеличении тока покоя выше оптимального значения, искажения выходного каскада в ряде случаев растут. Вполне возможно, что здесь проявляется влияние изменения крутизны выходного каскада, описанное Д. Селфом.

Важность параметра «фактор спектра» можно продемонстрировать на таком примере. На рис. 5 у транзистора Toshiba величины Кг и IMD при токах покоя 250 мА и 2000 мА практически равны. Из этого можно сделать вывод о том, что выходные транзисторы на этих токах работают совершенно одинаково. Однако значения фактора спектра для этих токов равны ФС(250 мА)=2,6 и ФС(2000 мА)=1,08. И спектры искажений в этих случаях разные. Они близки к спектрам, показанным на рис. 1 черным и синим графиками. Спектр искажений при токе покоя 250 мА содержит как минимум девять гармоник заметной амплитуды, тогда как спектр при токе 2000 мА содержит только вторую и третью гармоники.

Транзисторы разных производителей демонстрируют совершенно разное поведение. Это позволяет сделать вывод о том, что, несмотря на примерно одинаковые основные параметры транзисторов, их свойства сильно различаются. Однотипные транзисторы имеют очень близкие свойства. На рис. 8 показаны характеристики, измеренные на двух разных парах однотипных транзисторов. Различие лежит в пределах погрешности измерений.

Для более полного исследования и исключения случайности полученных результатов был проведен ряд дополнительных измерений. С целью их упрощения измерялся только коэффициент гармоник, который хорошо отражает нелинейность выходных транзисторов. Исследовались транзисторы 2SJ201/2SK1530 фирмы Toshiba. На рис. 9 показана зависимость Кг от тока покоя для различных значений сопротивления активной нагрузки. В целом зависимость сохраняется, и значение оптимального тока покоя можно считать неизменным.

На рис. 10 показана зависимость Кг от тока покоя на активной нагрузке для различных значений выходного напряжения. Графики пересекаются в одной точке: с одной стороны, чем меньше выходное напряжение, тем выше относительные искажения «ступенька» при малом токе покоя. Поэтому маленькое выходное напряжение дает большие искажения. Это при малом токе покоя. С другой стороны меньшее выходное напряжение создает меньшую нелинейность выходных транзисторов (у полевых транзисторов крутизна зависит от напряжения) и, следовательно, меньшие искажения при достаточно большом токе. И снова графики демонстрируют примерно то же значение оптимального тока покоя.

Две последние зависимости коэффициента гармоник от температуры выходных транзисторов и от частоты тестового тона (рис 10 и рис. 11) показывают, что ни один из этих факторов не влияет на поведение транзисторов. Так что полученные результаты (рис. 2 – рис. 7) верны при любых условиях работы усилителя.

Читайте так же:
Патрон для настольной лампы е27 с выключателем

Если сравнить зависимости Кг от тока покоя, то можно заметить, что на всех графиках искажения достигают значения, равного примерно 0,25%, и дальше не уменьшаются. Это происходит потому, что величина искажений выходного каскада достигает и становится меньше величины искажений второго по уровню нелинейности узла усилителя – каскада усиления напряжения, который имеет Кг порядка 0,25%. Однако на правильность выводов данная ситуация не влияет:

1. Ищется не минимум искажений, а оптимум тока покоя. Как только искажения выходного каскада стали меньше, чем каскада усиления напряжения, то оптимум найден – главный вклад в искажения усилителя в целом вносит другой узел, следовательно, выходной каскад в дальнейшем совершенствовании не нуждается.

2. Каскад усиления напряжения дополнительно линеаризован на 12 дБ. Так что если искажения выходного каскада стали меньше чем у линеаризованного усилителя напряжения, то уж наверняка они будут гораздо меньше искажений «обычного». И их вклад в общие искажения усилителя будет весьма мал.

3. Тот факт, что при дальнейшем увеличении тока покоя сверх оптимального значения с выходным каскадом происходят какие-то изменения, показывает фактор спектра – при дальнейшем увеличении тока покоя спектр искажений сокращается. Возможно, что уменьшается и амплитуда искажений. Так что минимум искажений явно не достигнут, но однозначно достигнут оптимум тока покоя, когда искажения выходного каскада уже достаточно низкие, а нагрев выходных транзисторов небольшой.

В качестве иллюстрации оптимальности полученных значений можно привести результаты применения теории оптимизации к данной задаче. Целевая функция получается следующим образом. Имеются две переменные – ток покоя и коэффициент гармоник. Обе они проявляют свойство: чем меньше значение, тем лучше. Следовательно, переменные следует перемножать и искать минимум целевой функции. Поскольку величина Кг изменяется на порядок, а ток покоя на два порядка, то переменные следует привести к одному масштабу изменения, чтобы переменная, изменяющаяся сильнее, не «перетягивала» на себя результат. Для этого следует из величины тока покоя извлечь квадратный корень, что приведет диапазон ее изменения к диапазону изменения Кг. Таким образом получаем критерий оптимальности:

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Результаты показаны на рис. 13, 14, 15. Они полностью согласуется с выводами, сделанными выше.

Выводы.

1. Искажения, вносимые выходным каскадом УМЗЧ, существенно зависят от тока покоя выходных полевых транзисторов.

2. Наименьшие искажения наблюдаются при работе в классе А, что полностью согласуется с теорией. В классе В искажения существенно выше, чем в классе АВ. С ростом тока покоя искажения в общем случае уменьшаются.

3. Существует оптимальное значение тока покоя, при котором искажения достаточно малы при работе транзисторов в классе АВ. В ряде случаев, при увеличении тока покоя выше оптимального значения, искажения выходного каскада растут.

4. Величина оптимального тока покоя для разных транзисторов лежит в диапазоне 150…300 мА, что намного больше тех значений, которые принято устанавливать в усилителях мощности. Обычно в усилителях устанавливают ток покоя 80…100 мА, а в некоторых промышленных конструкциях даже 40…60 мА.

5. Кроме амплитуды искажений, от тока покоя зависит и их спектр. При низких значениях тока покоя спектр гармоник значительно расширяется, а гармоники высоких порядков хуже подавляются отрицательной обратной связью. То есть при маленьком токе покоя у нас сразу две беды: большая величина Кг и широктй спектр искажений. Качество звучания наверняка будет невысоким. Спектр оптимального тока покоя содержит небольшое количество высших гармоник, которые эффективно подавляются общей ООС. Да и значение Кг невелико. Поэтому усилитель, ток покоя выходного каскада которого равен оптимальному, должен восприниматься на слух как хорошо звучащий.

6. Для транзисторов IRFP240/IRFP9240 оптимальный ток покоя составляет 300 мА. Для транзисторов 2SJ201/2SK1530 оптимальный ток покоя составляет 200…250 мА. Для транзисторов 2SJ162/2SK1058 оптимальный ток покоя составляет 120…150 мА.

7. Оптимальный ток покоя зависит только от типа выходных транзисторов. Другие факторы, такие как выходное напряжение или сопротивление нагрузки на его величину практически не влияют.

8. Самыми лучшими показали себя транзисторы 2SJ201/2SK1530 фирмы Toshiba. Транзисторы IRFP240/IRFP9240 фирмы International Rectifier заняли второе место. Они хоть и являются переключательными, тем не менее мало чем уступают транзисторам фирмы Toshiba. Транзисторы 2SJ162/2SK1058 фирмы Hitachi являются заметно нелинейными и не рекомендуются для высококачественного усиления. Оптимум тока покоя для них тоже получается каким-то расплывчатым.

9. При неоптимальном маленьком токе покоя (таком, какой часто устанавливают в усилителях) искажения, вносимые выходным каскадом, в четыре-шесть раз выше (а на слух — с учетом ширины спектра — в шесть-десять раз выше), чем при оптимальном. Поэтому для высококачественного усиления необходимо задавать ток покоя выходного каскада равным оптимальному.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector