Artellie.ru

Дизайн интерьеров
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В) Схемы с одной рабочей и обходной системами шин

В) Схемы с одной рабочей и обходной системами шин

При большом количестве присоединений на повышенном напряжении возможно применение схем с одиночной секционированной системой шин (см. рис. 2.3). Эта схема обладает рядом существенных недостатков, в том числе необходимостью отключения линии или источников питания на все время ремонта выключателя в их цепи. При напряжении 35 кВ отключение линии будет непродолжительным, так как длительность ремонта выключателей невелика. В этот период используется резерв по сети, чтобы обеспе­чить питание потребителей. При напряжениях 110 кВ и выше длитель­ность ремонта выключателей,

Рис. 2.3. Схемы с одной системой сборных шин несекционированых (а) и секционированных (б)

особенно воздушных, возрастает и становит­ся недопустимым отключать цепь на все время ремонта, поэтому схема по рис. 2.3 применяется только для РУ 35 кВ.

Одним из важных требований к схемам на стороне высшего напряже­ния является создание условий для ревизий и опробований выключателей без перерыва работы. Этим требованиям отвечает схема с обходной систе­мой шин (рис. 2.4). В нормальном режиме обходная система шин АО на­ходится без напряжения, разъединители QSO, соединяющие линии и транс­форматоры с обходной системой шин, отключены. В схеме предусматри­вается обходной выключатель QO, который может быть присоединен к любой секции с помощью развилки из двух разъединителей. Секции в этом случае расположены параллельно друг другу. Выключатель QO мо­жет заменить любой другой выключатель, для чего надо произвести сле­дующие операции: включить обходной выключатель QO для проверки исправности обходной системы шин, отключить Q0, включить QSO, вклю­чить QO, отключить выключатель Q1, отключить разъединители QSI и QS2.

Рис. 2.4. Схема с одной рабочий и обходной системами шин:

а – схема с совмещенным обходным и секционным выключателем и отделителями в цепях трансформатора; б – режим замены линейного выключателя обходным; в – схема с обходным и секционным выключателем.

После указанных операций линия получает питание через обходную си­стему шин и выключатель QO от первой секции (2.4, б). Все эти операции производятся без нарушения электроснабжения по линии, хотя они свя­заны с большим количеством переключений.

С целью экономии функции обходного и секционного выключателей могут быть совмещены. На схеме рис. 2.4, а кроме выключателя QO есть перемычка из двух разъединителей QS3 и QS4. В нормальном режиме эта перемычка включена, обходной выключатель присоединен к секции В2 и также включен. Таким образом секции В1 и В2 соединены между собой через QO, QS3, QS4, и обходной выключатель выполняет функции секцион­ного выключателя. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки (QS5), а затем использовать QO по его назначению. На все время ремонта линей­ного выключателя параллельная работа секций, а следовательно, и линий нарушается. В цепях трансформаторов в рассматриваемой схеме установ­лены отделители (могут устанавливаться выключатели нагрузки QW). При повреждении в трансформаторе (например, Т1) отключаются выключатели линий W1, W3 и выключатель QO. После отключения отделителя QR1 вы­ключатели включаются автоматически, восстанавливая работу линий. Та­кая схема требует четкой работы автоматики.

Схема по рис. 2.4, а рекомендуется для ВН подстанций (110 кВ) при числе присоединений (линий и трансформаторов) до шести включительно, когда нарушение параллельной работы линий допустимо и отсутствует перспектива дальнейшего развития. Если в перспективе ожидается расши­рение РУ, то в цепях трансформаторов устанавливаются выключатели. Схемы с трансформаторными выключателями могут применяться для на­пряжений 110 и 220 кВ на стороне ВН и СН подстанций [3].

При большем числе присоединений (7 — 15) рекомендуется схема с от­дельными обходным QO и секционным QB выключателями. Это позво­ляет сохранить параллельную работу линий при ремонтах выключателей (рис. 2.4, в).

В обеих рассмотренных схемах ремонт секции связан с отключением всех линий, присоединенных к данной секции, и одного трансформатора, поэтому такие схемы можно применять при парных линиях или линиях, резервируемых от других подстанций, а также радиальных, но не более одной на секцию [3].

На электростанциях возможно применение схемы с одной секциониро­ванной системой шин по рис. 2.4, в, но с отдельными обходными выклю­чателями на каждую секцию.

г)Схема с двумя системами шин

Схемы РУ с двумя системами сборных шин являются естественным развитием схем с одной системой сборных шин. В схеме с двумя системами сборных шин и одним выключателем на цепь (рис. 2.5, а) нормально в работе находятся обе системы шин при включенном или отключен­ном (по режимным соображениям) шиносоединительном выключателе ШСВМ.

Каждое присоединение подключается (согласно принятой фиксации) к той или другой системе сборных шин, выполняющих в данном случае роль не только ремонтных, но и оперативных аппаратов, т. е. таких аппаратов, с помощью которых возможно переключение цепей с одной системы сборных шин на другую, при помощи разъединителей развилки. Эта операция выпол­няется при включенном ШСВМ[4].

При помощи ШСВМ можно отключить любое присоеди­нение, если оно по каким-либо причинам не может быть отключено «своим» выключателем. Для этого включается ШСВМ и все присоединения, кроме отключаемого, перево­дятся на одну из систем сборных шин, а отключаемое ос­тается на другой системе. Затем это присоединение вместе с системой сборных шин отключается ШСВМ.

ШСВМ
ШСВМ
ШСВМ
ШСВМ

Рис. 2.5. Распределительные устройства с двумя системами сборных шин:

Читайте так же:
Схема подключения двухклавишного наружного выключателя

а — с одним выключателем на цепь; б — оперативная схема при выводе в ре­монт выключателя присоединения с установкой ремонтной перемычки; в — одна из систем сборных шин секционирована; 1 — развилка шинных разъединителей; 2 — ремонтная перемычка; 3 — выключатель присоединения отключен и выведен из схемы; 4 — присоединение секционного выключателя с реактором

Шиносоединительный выключатель используется также при выводе в ремонт выключателей присоединений. Элек­трическая цепь, выключатель которой предполагается вы­вести в ремонт, отключается, выводимый в ремонт выклю­чатель отсоединяется от шин, и далее цепь включается в работу через ШСВМ. При осуществлении этой операции от­соединенные от выключателя шины соединяются между собой специальными ремонтными перемычками из провода (рис. 2.5, б).

Схема предоставляет возможность поочередного выво­да в ремонт систем сборных шин без прекращения работы электрических цепей. Для ремонта шинных разъедините­лей отключается лишь та цепь, разъединители которой выводятся в ремонт.

При повреждении на системе сборных шин автоматиче­ски отключаются присоединения только этой системы сбор­ных шин. Для ввода присоединений в работу необходимо переключение их шинными разъединителями с поврежден­ной на оставшуюся в работе систему сборных шин. К по­тере присоединений электроустановки приводит также от­каз в работе выключателя цепи во время к.з. на ней.

Существенным недостатком схемы является отключение всей электроустановки при следующих обстоятельствах:

коротком замыкании на рабочей системе сборных шин, когда другая система сборных шин выведена в ремонт;

создании ремонтных схем, связанных с ремонтом вы­ключателей;

повреждении ШСВМ, а также не отключении его во вре­мя к. з. на одной из систем сборных шин, когда в работе находились обе системы сборных шин.

К недостаткам схемы относят увеличение в 2 раза числа шинных разъединителей и более сложное выполне­ние блокировки между выключателями и разъединителя­ми, а также между рабочими и заземляющими разъеди­нителями.

Использование шинных разъединителей в качестве опе­ративных аппаратов, несмотря на наличие блокировок, не исключает ошибочных действий персонала при переклю­чениях. Часты, например, случаи включения (отключения) шинных разъединителей под током нагрузки, включения шинных разъединителей на не снятые заземления и т. д.

Надежность схем с двумя системами сборных шин и од­ним выключателем на цепь повышается при секционирова­нии шин выключателем. Обычно секционируется одна рабо­чая система сборных шин, другая не секционируется и явля­ется резервной (рис. 2.5, в). В схеме имеются два шиносоединительных выключателя, соединяющих каждую секцию шин с резервной системой сборных шин. Это позволяет выводить в ремонт любую секцию шин путем перевода ее присоединений на резервную систему сборных шин. При необходимости возможно сохранение параллельной работы источников питания включением другого ШСВМ, который будет выполнять роль секционного выключателя.

Подстанции систем электроснабжения — Схемы распределительных устройств напряжением 6—220 кВ со сборными шинами

Применяются следующие схемы распределительных устройств [26]:
• с одной несекционированной системой шин;
• с одной секционированной системой шин;
• с двумя одиночными секционированными системами шин’;
• с четырьмя одиночными секционированными системами шин2;
• с одной секционированной и обходной системами шин;
• с двумя системами шин;
• с двумя секционированными системами шин;
• с двумя системами шин и обходной;
• с двумя секционированными системами шин и обходной. Схема с одной несекционированной системой шин — самая простая
схема, которая применяется в сетях 6—35 кВ (рис. 3.4.2). В сетях 10(6) кВ схему называют одиночной системой шин. На отходящих и питающих линиях устанавливается один выключатель, один шинный и один линейный разъединители.
1 Для РУ 10(6) кВ ПС с двумя трансформаторами с расщепленной обмоткой или с одним трансформатором с расщепленной обмоткой и двумя сдвоенными реакторами.
2 Для РУ 10(6) кВ ПС с двумя трансформаторами с расщепленной обмоткой и двумя сдвоенными реакторами.

Схема с одной системой шин

Рис. 3.4.2. Схема с одной системой шин

Недостатки данной схемы:
• в схеме используется один источник питания;
• профилактический ремонт сборных шин и шинных разъединителей связан с отключением распределительного устройства, что приводит к перерыву электроснабжения всех потребителей на время ремонта;
• повреждения в зоне сборных шин приводят к отключению распределительного устройства;
• ремонт выключателей связан с отключением соответствующих присоединений.

Схема с одной секционированной системой шин

Схема с одной секционированной выключателем системой шин (рис. 3.4.3) позволяет частично устранить перечисленные выше недостатки предыдущей схемы путем секционирования системы шин, т. е. разделения системы шин на части с установкой в точках деления секционных выключателей. Секционирование, как правило, выполняется так, чтобы каждая секция шин получала питание от разных источников питания. Число присоединений и нагрузка на секциях шин должны быть по возможности равными.
В нормальном режиме секционный выключатель может быть включен (параллельная работа секций шин) или отключен (раздельная работа секций шин). В системах электроснабжения промышленных предприятий и городов предусматривается обычно раздельная работа секций шин. Данная схема проста, наглядна, экономична, обладает достаточно высокой надежностью, широко применяется в промышленных и городских сетях для электроснабжения потребителей любой категории на напряжениях до 35 кВ включительно.

Рис. 3.4.3. Схема с одной секционированной системой шин

Допускается применять данную схему при пяти и более присоединениях в РУ 110—220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии возможности замены выключалей в эксплуатационный период. В сетях 10(6) кВ эта схема имеет преимущество. По сравнению с одиночной несекционированной системой шин данная схема имеет более высокую надежность, так как при коротком замыкании на сборных шинах отключается только одна секция шин, вторая остается в работе.
Недостатки схемы с одной секционированной выключаталем системы шин:
• на все время проведения контроля или ремонта секции сборных шин один источник питания отключается;
• профилактический ремонт секции сборных шин и шинных разъединителей связан с отключением всех линий, подключенных к этой секции шин;
• повреждения в зоне секции сборных шин приводят к отключению всех линий соответствующей секции шин;
• ремонт выключателей связан с отключением соответствующих присоединений.
Вышеперечисленные недостатки частично устраняются при использовании схем с большим числом секций. На рис. 3.4.4 представлена схема РУ 10(6) кВ подстанции с двумя трансформаторами с расщепленной обмоткой или с двумя сдвоенными реакторами. Схема имеет четыре секции шин и называется «две одиночные секционированные выключателями системы шин». При наличии одновременно двух трансформаторов с расщепленной обмоткой и двух сдвоенных реакторов применяется схема, состоящая из восьми секций шин, которая называется «четыре одиночные секционированные выключателями системы шин» (рис. 3.4.5).

Читайте так же:
Пневматический выключатель ds 2004

Схема с одной секционированной выключателем и обходной системами шин позволяет проводить ревизию и ремонт выключателей без отключения присоединения. В нормальном режиме обходная система шин находится без напряжения, разъединители, соединяющие линии и трансформаторы с обходной системой шин, отключены. В схеме могут быть установлены два обходных выключателя, осуществляющие связь каждой секции шин с обходной. В целях экономии средств ограничиваются одним обходным выключателем с двумя шинными разъединителями, с помощью которых обходной выключатель может быть присоединен к первой или второй секциям шин. Именно эта схема предлагается в качестве типовой для распределительных устройств напряжением 110—220 кВ при пяти и более присоединениях (рис. 3.4.6).
Схема с двумя одиночными секционированными системами шин
Рис. 3.4,4. Схема с двумя одиночными секционированными системами шин (ТСН при постоянном оперативном токе подключаются к сборным шинам)
Рис. 3.4.6. Схема с одной секционированной и обходной системами шин с обходным (Q1.)
и секционным (Q2) выключателями

Схема с одной секционированной и обходной системами шин с обходным выключателем

В схеме с двумя системами сборных шин каждое присоединение содержит выключатель, два шинных разъединителя и линейный разъединитель. Системы шин связываются между собой через шиносоединительный выключатель (рис. 3.4.7). Возможны два принципиально разных варианта работы этой схемы. В первом варианте одна система шин является рабочей, вторая — резервной. В нормальном режиме работы все присоединения подключены к рабочей системе шин через соответствующие шинные разъединители. Напряжение на резервной системе шин в нормальном режиме отсутствует, шиносоединительный выключатель отключен. Во втором варианте, который в настоящее время получил наибольшее применение, вторую систему сборных шин используют постоянно в качестве рабочей в целях повышения надежности электроустановки. При этом все присоединения к источникам питания и к отходящим линиям распределяют между обеими системами шин. Шиносоединительный выключатель в нормальном режиме работы замкнут. Схема называется «две рабочие системы шин».
Схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в рабочем состоянии все присоединения. Для этого все присоединения переводят на одну систему шин путем соответствующих переключений коммутационных аппаратов. Данная схема является гибкой и достаточно надежной.
Недостатки схемы с двумя системами шин:
• при ремонте одной из систем шин на это время снижается надежность схемы;

Схема с двумя системами шин с шиносоединительным выключателем Q1

Рис. 3.4.7. Схема с двумя системами шин с шиносоединительным выключателем Q1

Схема с двумя секционированными системами шин с двумя шиносоединительными и двумя секционными выключателями

• при замыкании в шиносоединительном выключателе отключаются обе системы шин;
• ремонт выключателей и линейных разъединителей связан с отключением на время ремонта соответствующих присоединений;
• сложность схемы, большое число разъединителей и выключателей. Частые переключения с помощью разъединителей увеличивают вероятность повреждений в зоне сборных шин. Большое число операций с разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочных действий обслуживающего персонала.
Схему «две рабочие системы шин» допускается применять в РУ 110—220 кВ при числе присоединений от 5 до 15, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время.
В РУ 110—220 кВ при числе присоединений более 15 делят сборные шины на секции с установкой в точках деления секционных выключателей (рис. 3.4.8). При этом должно предусматриваться два ши-носоединительных выключателя. Таким образом, распределительное устройство делится на четыре части, связанные между собой двумя секционными и двумя шиносоединительным и выключателями. Данная схема называется «две рабочие секционированные выключателями системы шин». Она используется при тех же условиях, что и схема «две рабочие системы шин».

Рис. 3.4.8. Схема с двумя секционированными системами шин с двумя шиносоединительными (QI, Q2) и двумя секционными (Q3, Q4) выключателями

Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями обеспечивает возможность поочередного ремонта выключателей без перерыва в работе соответствующих присоединений (рис. 3.4.9). Схема рекомендуется к применению в РУ 110—220 кВ при числе присоединений от 5 до 15. В нормальном режиме работы обе системы шин являются рабочими, шиносоединительный выключатель находится во включенном положении.
Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями
Рис. 3.4.9. Схема с двумя системами шин и обходной с шиносоединительным (Q1) и обходным (Q2) выключателями
При числе присоединений более 15 или более 12 и при установке на подстанции трех трансформаторов мощностью 125 МВА и более рекомендуется к применению схема «две рабочие секционированные выключателями и обходная системы шин» с двумя шиносоединительными выключателями и двумя обходными выключателями. Связь между секциями шин обеспечивается через секционные выключатели, которые в нормальном режиме отключены (рис. 3.4.10).
Рекомендации по применению данной схемы распределительных устройств 6—220 кВ приведены в табл. 3.4.1.
Схема с двумя системами шин и обходной с двумя шиносоединительными и двумя обходными выключателями
Рис. 3.4.10. Схема с двумя системами шин и обходной с двумя шиносоединительными (Ql, Q2) и двумя обходными (Q3, Q4) выключателями (Q5,
Q6 — секционные выключатели)

Читайте так же:
Проходной выключатель лезард 2 клавишный

Таблица 3.4.1. Рекомендации по применению схем распределительных устройств напряжением до 220 кВ включительно

Номер (номинальное напряжение-индекс схемы по [26])*

Одиночная система шин

В РП, РУ 10(6) кВ при отсутствии присоединений с электроприемниками первой категории или при наличии резервирования их от других РП, РУ

Словарь специальных терминов

Азбука гидроэнергетики

Электрические схемы распределительных устройств

Распределительные устройства станций, подстанций характеризуются номинальным напряжением, числом и мощностью присоединенных генераторов, трансформаторов, мощностью, выдаваемой в сеть и режимом работы. Сборные шины могут быть выполнены одиночными или двойными, часто предусматривают третью вспомогательную систему шин. Присоединения источников энергии к сборным шинам выполняют различно. Отношение числа выключателей к числу присоединений лежит в пределах от 1 до 2. При малом числе присоединений применение получили упро­щенные схемы.

Распределительные устройства с одной системой шин

В устройствах, изображенных на рис.1 а, каждое присоединение содержит выключатель и два разъединителя – шинный и линейный.

Рис. 1. Принципиальная схема РУ с одной системой сборных шип. а — шины не секционированы: 6 — секционированные шины: в – секционированные шины и обходное устройство

Операции с разъединителями допускаются только при отключенном выключателе соответствующего присоединения.

Достоинство рассматриваемой схемы с одной системой сборных шин:

  1. Простота РУ, что практически исключают ошибочные операции с разъединителями. Тем не менее, предусматриваются блокирующие уст­ройства, препятствующие неправильным операциям.
  2. Низкая стоимость.

Недостатки ее следующие:

  1. Профилактический ремонт сборных шин и шинных разъединителей связан с отключением всего устройства на время ремонта.
  2. Ремонт выключателей и линейных разъединителей связан с от­ключением соответствующих присоединений, что нежелательно, в некоторых случаях недопустимо.
  3. Короткое замыкание в зоне сборных шин приводит к полному от­ключению РУ.
  4. То же самое имеет место в случае внешнего замыкания и отказа выключателя соответствующего присоединения.

Чтобы избежать полного отключения РУ при замыкании в зоне сборных шин и обеспечить возможность их ремонта по частям, прибегают к секционированию сборных шин, т. е. разделению их на части — секции с установкой в точках деления выключателей. Эти выключатели называют

секционными (рис 1.б). Редко встречаются устройства, сборные шины которых секционированы через разъединители. Секционирование должно быть выполнено так, чтобы каждая секция имела источники энергии (генераторы, трансформаторы) и соответствующую нагрузку. Присоединения распределяют между секциями так, чтобы вынужденное отключение одной секции не нарушало электроснабжения потребителей.

При нормальной работе секционные выключатели замкнуты, т.к. генераторы должны работать параллельно. В случае КЗ в зоне сборных шин поврежденная секция отключается автоматически. Остальные секции остаются в работе. Таким образом, секционирование способствует повышению надежности РУ.

В РУ низшего напряжения 6—10 кВ подстанций секционные выключатели разомкнуты в целях ограничения тока КЗ.

Выключатели снабжают устройствами автоматического включения резервного питания (АВР), замыкающими выключатели в случае отключения трансформатора, чтобы не нарушать электроснабжения потребителей.

Для обеспечения возможности поочередного ремонта выключателей, не нарушая работы соответствующих цепей, предусматривают обходные выключатели и обходную систему шин с разъединителями в каждом присоединении (рис. 1 в). При нормальной работе установки обходные разъединители и обходные выключатели отключены.

Распределительные устройства с одной секционированной системой сборных шин применяется в РУ до 220 кВ включительно. Устройства с одной секционированной системой сборных шин (без обходной системы) применяют в качестве РУ 6—35 кВ подстанции, РУ 6 – 10 кВ станций типа ТЭЦ. Аналогичные устройства, но с обходной системой шин, применяют при ограниченном числе присоединении в110 – 220 кВ.

Распределительные устройства с двумя системами сборных шин

В РУ с двумя системами сборных шин, изображенной на рис.2 а каждое присоединение содержит выключателей два шинных разъединителя. Линейные разъединители предусматриваются для безопасного ремонта выключателей

Рис. 2. Принципиальная схема РУ с двумя системами сборных шин. а шины не секционированы; б — секционированные шины и обходное устройство

Раньше вторую систему сборных шин использовали в качестве резерв­ной при ремонте рабочей. Сейчас в РУ 110—220кВ, вторую систему шин используют постоянно в качестве рабочей системы в целях повышения надежности электроустановки. При этом присоединения с нагрузками распределяют между обеими системами. Для защиты сборных шин применяют дифференциальную токовую защиту, обеспечивающую селективное отключение поврежденной системы. При этом вторая система шин с соответствующими источниками энергии и нагрузкой остается в работе. Работа на одной системе сборных шин допускается только временно при ремонте другой системы. В это время надежность РУ снижается.

Достоинства рассматриваемой схемы:

  1. возможность поочередного ремонта сборных шин без перерыва в ра­боте присоединений;
  2. повышение надежности электроснабжения и ограничение тока КЗ;
  3. возможность переключений отдельных присоединений с одной системы сборных шин на другую.

Недостатки схемы следующие:

  1. при ремонте одной из систем шин снижается надежность РУ
  2. при замыкании в шиносоеденительном выключателе отключаются обе системы шин;
  3. в случае внешнего замыкания и отказа выключателя соответствующего присоединение отключается система шин;
  4. сложность РУ;
  5. большая вероятность повреждения в зоне сборных шин из-за частых переключений.

Чтобы частично устранить эти недостатки секционируют обе системы шин с помощью нормально замкнутых выключателей и предусматривают два шиносоединительных выключателя. Чтобы обеспечить возможности поочередного ремонта выключателей предусматривают обходную систему шин и обходные выключатели. (рис. 2. б)

Читайте так же:
Auma настройка моментных выключателей

В отечественных энергосистемах приблизительно до 1950—I960 гг. РУ с двумя системами сборных шин (с обходной системой и без нее) принято было считать универсальными. Они получили почти исклю­чительное применение на станциях и подстанциях при всех напряжениях, начиная от 6 до 220 кВ включительно. Распределительные устройства 500 кВ мощных тепловых электростанций приблизительно до 1960 г. принято было также выполнять по этой схеме.

В настоящее время область применения РУ с двумя системами сборных шин резко уменьшилась. Их применяют в основном на станциях и подстанциях при напряжениях до 220 кВ и большом числе присоединений. Как правило, применяют обходную систему с обходными выключателями. Применение РУ с двумя системами сборных шин в качестве главных устройств 330-500 кВ мощных станций и подстанций признается в настоящее время нецелесообразным вследствие сложности переключений разъединителями и тяжёлых последствий отключения системы шин с мощными агрегатами и линиями при внешних замыканиях и отказах линейных выключателей, а также при замыканиях в шиносоеденительных и секционных выключателях. Целесообразность применения РУ с двумя системами сборных шин в качестве главных устройств 610 кВ станций типа ТЭЦ также подвергнута сомнению. Эти устройства предпочитают выполнять с одной секционированной системой сборных шин.

Распределительные устройства, выполненные по схемам кольцевого типа

РУ с одной и двумя системами сборных шин являются схема­ми радиального типа. Наряду с ними применение получили прин­ципиально отличные схемы кольцевого типа. Схема представляет собой кольцо или несколько связанных между со­бой колец с ответвлениями к источ­никам энергии и нагрузкам; отклю­чение каждой ветви производится двумя выключателями, секционирующими кольца в соответствии с числом присоеди­нений; отключение любого выклю­чателя для ремонта не нарушает работы ветвей, хотя нормальное со­стояние схемы при этом нарушает­ся; при повреждениях в пределах РУ или внешних КЗ и отказах вы­ключателей отключение всего уст­ройства или значительной его части практически исключено; разъеди­нители используются только по сво­ему прямому назначению — для изоляции отключенных частей РУ и системы.

Типовые схе­мы кольцевого типа значитель­но разнообразнее радиальных схем. Различают простые кольцевые схемы и схемы связанных колец.

Простая кольцевая схема.

Рис. 3 Простая кольцевая схема РУ

Схе­мы этого типа (рис. 1) назы­вают также «схемами многоуголь­ников». Как видно из рисунка, концы шин соединены между собой, т.е. замкнуты в кольцо.

  1. Внешнее замыкание в любом при­соединении отключается двумя выключателями. При этом кольцо раз­мыкается, но все ветви, кроме поврежденной, остаются в работе.
  2. Замыкание в зоне сборных шин (участки между выключателями) равносильно замыканию на ответв­лении и приводит к отключению только одного присоединения.
  1. При размыкании кольца, внешнее замыкание может привести к отключению вме­сте с поврежденной ветвью также соседней неповрежденной ветви.
  2. Нарушение связи между ча­стями кольца из-за замыкания на линии в период ремонта выключателей может вызвать в за­висимости от схемы сети частичное нарушение электроснабжения.

Поэтому схемы типа простого кольца имеют ограниченное применение при числе присоединений, не превышающем 5—6.

Схемы связанных колец

Рис. 4 Схемы связанных колец

Схемы связанных колец могут быть применены при большом числе присоединений. На рисунке представлены два связан­ных кольца с девятью присоедине­ниями. Общее число выключателей равно десяти.

Связь колец способствует повы­шению надежности РУ. Вероят­ность отключения неповрежденных ветвей при ремонте выключателей и внешних замыканиях уменьшена. Распределение рабочего тока в кольцах при нормальном режиме и, в особенности при нарушении его для этой схемы более благоприятно.

Распределительные устройства с двумя системами сборных шин и числом выключателей на каждую ветвь 2, 3/2 и 4/3.

В устройствах этого типа есть явно выраженные сборные шины и элементы колец в виде ряда цепо­чек из двух, трех и четырех выклю­чателей, связывающих сборные ши­ны. К каждой такой цепочке присо­единены одна, две или три ветви с источниками энергии и нагрузкой.

Рис. 5. Принципиальная схема РУ с дву­мя системами сборных шин с двумя выклю­чателями на каждое присоединение.

Вариантом двойной схемы является схема с фиксированными присоединениями трансформатор – шины или линия. Вывод в ревизию любого выключателя здесь возможен без нарушения работы присоединений с минимумом переключений в схеме.

  1. повреждение шин означает потерю блока или линии;
  2. повреждение линии отключается всеми выключателями;
  3. при числе присоединений больше пяти, схема требует установки большого числа выключателей;
  4. ревизия шин требует отключения блока или линии.

Поэтому применение схем с фиксированными присоединениями рис. 3 допускается только при малом числе присоединений в отдельных редких случаях

Для мощных блочных электростанций все более широкое применение находит полуторная схема (3/2) и схема 4/3, а также системы «чистых» блоков Г-Т-Л (генератор – трансформатор — линия).

Полуторная схема, показанная на рис. 4, имеет следующие преимущества:

  1. Ревизия любого выключателя или системы шин производится без нарушения работы присоединений и с минимальным числом операций при выводе этих элементов в ремонт.
  2. Разъединители используются только при ремонте (обеспечение видимого разрыва до элементов РУ, находящихся под напряжением).
  3. Обе системы шин могут быть отключены одновременно без нарушения работы присоединений.

К недостаткам полуторной схемы относят:

  1. большое число выключателей и трансформаторов тока,
  2. усложнение релейной защиты присоединений
  3. выбор выключателей и всего остального оборудования на удвоенные номинальные токи.

Повышенное число выключателей в схеме частично компенсируется отсутствием междушинных выключателей.

Читайте так же:
Поплавок выключатель для насоса инструкция

Схема 4/3 на рис. 7, а сходна с полуторной, но более экономична, так как в ней приходится не на 1/2 выключателя на цепь больше (по сравнению со схемой с двойной системой шин), а только на 1/3.

Схема чистого блока Г.Т.Л., показанная на рис.7, б применяется лишь на напряжении 110 — 220 кВ и при относительно малой длине блочных линий. Это связано с тем, что в этой схеме плохо используются возможности блочных линий – их пропускная способность при напряжении 330÷750 кВ значительно превышает мощность блочных генераторов, а при остановке генератора в ремонт линия блока не может быть использована для уменьшения потерь в сети.

Упрощенные схемы распределительных устройств

Упрощенные схемы без сборных шин или с короткими перемычками между присоединениями получили применение для РУ с малым числом присоединений.

/>

Рис. 8. Упрощенные схемы распредели­тельных устройств: а — одиночный мост; б — двойной мост;

На рис. 6, а при­ведена схема устройства для четы­рех присоединений — двух линий и двух трансформаторов. Здесь предусмотрены выключатели на лини­ях, вероятность повреждений кото­рых значительно больше вероятно­сти повреждений трансформаторов. Третий выключатель предусмотрен на перемычке. Такую схему называ­ют схемой с мостом.

При наличии трех линий и двух трансформаторов (рис. 6, б) не­обходимо иметь четыре выключа­теля — два на линиях и два на пере­мычках. Такую схему называют схемой с двойным мостом.

Большая Энциклопедия Нефти и Газа

Следует иметь в виду, что двойную систему шин на ИП, если, одна из систем ( рабочая) не секционирована, нельзя рассматривать как независимые ИП. При повреждении рабочей несекционированной системы шин все отходящие линии потеряют питание. Переключение этих линий на вторую неповрежденную систему шин потребует много времени, так как не может быть автоматизировано. В этих случаях следует разделить все отходящие линии между двумя системами шин ( фиксированное присоединение), которые превратятся в секции, и шинрсоединитель-ный выключатель будет играть роль межсекционного.  [31]

АВР предусматривается при этом на щите низкого напряжения, секционированного на две части с помощью установленного на щите секционного контактора. Понизительные подстанции с одной несекционированной системой шин ( рис. 22) для обеспечения повышенной надежности электроснабжения КС дополнительно оборудуются ячейкой резервного питания. Резервный источник питания включается в случае исчезновения тока в основном рабочем вводе, который при этом отключается.  [33]

Нередко на тепловых электростанциях имеется несколько повышающих распределительных устройств на различных напряжениях. На электростанциях небольшой мощности применяются схемы электрических соединений с одинарной несекционированной системой шин . На рис. 7.18, а изображена схема тепловой электростанции малой мощности, на которой вся отпускаемая электроэнергия отбирается с шин генераторного напряжения. Отходящие линии могут быть отключены и заземлены линейными разъединителями с заземляющими ножами.  [34]

Последние широко применяются в системах электроснабжения промышленных предприятий, городов, поселков, агропромышленных комплексов. Распределительные пункты, как правило, выполняются с одиночной секционированной или несекционированной системой шин .  [35]

Для РУ повышенных напряжений ТЭЦ ( 35 кВ и выше) в зависимости от числа цепей и ответственности ТЭЦ обычно применяют следующие схемы электрических соединений: блок трансформатор — линия ( с выключателем или без выключателя); схема ответвлений от проходящих линий 35 — ПО кВ; схемы мостиков; схемы многоугольников ( треугольник, четырехугольник); схема с одной секционированной системой сборных шин; схема с одной секционированной системой сборных шин и с обходной; схема с двумя системами сборных шин; схема с двумя несекционированными системами шин и с обходной. Обходная система сборных шин применяется в РУ напряжением 110 кВ и выше. Могут применяться также и другие схемы, рекомендованные НТП для тепловых электростанций.  [36]

Данная схема проста, наглядна, экономична, обладает достаточно высокой надежностью, широко применяется в промышленных и городских сетях для электроснабжения потребителей любой категории на напряжениях до 35 кВ включительно. Допускается применять данную схему при пяти и более присоединениях в РУ 110 — 220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ ПО кВ с выкатными выключателями при условии возможности замены выключалей в эксплуатационный период. В сетях 10 ( 6) кВ эта схема имеет преимущество. По сравнению с одиночной несекционированной системой шин данная схема имеет более высокую надежность, так как при коротком замыкании на сборных шинах отключается только одна секция шин, вторая остается в работе.  [37]

ПГВ и ГПП, на средних и крупных цеховых подстанциях, от которых кроме трансформаторов питаются также электродвигатели, электропечи и другие электроприемники на напряжение выше 1000 В. Такие схемы применяют также в РУ 110 — 220 кВ ГПП в тех случаях, когда нельзя применить блочные схемы без сборных шин. Одиночная секционированная система шин надежна, так как коммутационных операций меньше, чем при двойной системе, и, следовательно, меньше ошибок при эксплуатации. Разъединители не являются оперативными и служат только для снятия напряжения с выключателя на время его ревизии или ремонта, поэтому серьезных последствий от ошибок при оперировании с ними не бывает, так как они снабжены надежной и простой блокировкой ( как правило механической) с выключателями, которая практически исключает ошибочные операции. Схемы с одной несекционированной системой шин применяются для питания неответственных потребителей 3 — й категории, так как они имеют существенные недостатки.  [39]

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector