Artellie.ru

Дизайн интерьеров
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Страница 4: ГОСТ 30323-95. Методы расчета электродинамического и термического действия тока короткого замыкания (64022)

Страница 4: ГОСТ 30323-95. Методы расчета электродинамического и термического действия тока короткого замыкания (64022)

Термически эквивалентный ток КЗ определяют по формуле (34).

3.2 Проверка электрических аппаратов на термическую стойкость при КЗ

3.2.1 Термическая стойкость электрических аппаратов при КЗ характеризуется их нормированным током термической стойкости (Iтер.норм) в амперах и допустимым временем воздействия этого тока (tтер.норм) в секундах.

3.2.2 Расчетное выражение, которое следует использовать при проверке коммутационных аппаратов на термическую стойкость, зависит от расчетной продолжительности КЗ.

Если расчетная продолжительность КЗ (tоткл) в секундах равна или больше допустимого времени воздействия нормированного тока термической стойкости (tтер.норм) в секундах, то для проверки коммутационных аппаратов следует использовать выражение

Если же tоткл<tтер.норм, то условием термической стойкости является

Кривые для определения от синхронного электродвигателя

Кривые для определения от синхронного электродвигателя

Кривые для определения от асинхронного электродвигателя

Кривые для определения от асинхронного электродвигателя

3.2.3 Допускается проверку коммутационных электрических аппаратов на термическую стойкость при КЗ производить путем сравнения термически эквивалентного тока КЗ с допустимым током термической стойкости, учитывая при этом соотношение между допустимым временем воздействия нормированного тока термической стойкости и расчетной продолжительностью КЗ. Если tоткл>tтер.норм, то проверку коммутационных аппаратов на термическую стойкость при КЗ следует производить, используя соотношение

Если же tоткл<tр.норм, то условием термической стойкости коммутационного аппарата является соотношение

3.3 Проверка проводников на термическую стойкость при КЗ

3.3.1 Проверка проводников на термическую стойкость при КЗ заключается или в определении их температуры нагрева к моменту отключения КЗ и сравнении этой температуры с предельно допустимой температурой нагрева соответствующих проводников при КЗ, или в определении термически эквивалентной плотности тока КЗ и сравнении этой плотности с допустимой плотностью тока КЗ.

3.3.2 Расчет температуры нагрева проводников к моменту отключения КЗ следует вести с использованием кривых, приведенных на рисунке 21 — для жестких шин, кабелей и некоторых проводов, и рисунке 22 — для проводов других марок.

Кривые для определения температуры нагрева шин, проводов и кабелей из различных материалов при КЗ

Материалы проводников: 1 — ММ; 2 — МТ; 3 — A; 4 — АТ; 5 — АД0; ACT; 6 — АД31Т1; 7 — АД31Т; 8 — Ст3

Кривые для определения температуры нагрева проводов при КЗ

Материалы проводов: 1 — сплавы АЖ и АЖКП; 2 — сплавы АН и АНКП; 3 — алюминий марок А, АКП, АпКП и сталеалюминий марок АС, АСКП, АСКС, АСК, АпС, АпСКС, АпСК

С этой целью необходимо:

1) на рисунке 21 выбрать кривую, соответствующую материалу проводника, и по этой кривой, исходя из начальной температуры проводника Jн, определить значение функции АJн, с 2 /мм 4 ;

2) в соответствии с указаниями пп. 3.1.5-3.1.8 определить значение интеграла Джоуля Bтер;

3) найти значение функции АJк, соответствующее конечной температуре нагрева проводника Jк

где S площадь поперечного сечения проводника, мм 2 .

При расчете температуры нагрева сталеалюминиевых проводов в формулу (54) следует вводить площадь поперечного сечения алюминиевой части провода;

Читайте так же:
Питание светодиода от сети переменного тока

4) по найденному значению функции AJк, используя выбранную кривую на рисунке 21, определить конечную температуру нагрева проводника Jк и сравнить ее с предельно допустимой температурой. Предельно допустимые температуры нагрева проводника при КЗ приведены в таблице 6.

Таблица 6 — Предельно допустимые температуры нагрева проводников при КЗ

Односекундные токи термической стойкости для кабелей

ГОСТ Р 52736-2007

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Короткие замыкания в электроустановках

МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО
И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Short-circuits in electrical installations.
Calculation methods of electrodynamics and thermal effects of short-circuit current

Дата введения 2008-07-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО "НТЦ электроэнергетики" — ВНИИЭ, Московским энергетическим институтом (Техническим университетом) (МЭИ (ТУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 437 "Токи короткого замыкания"

Информация об изменениях к настоящему стандарту публикуется ежегодно в издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок — в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет методы расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях (КЗ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 687-78 Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия

ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией. Технические условия

ГОСТ 18410-73 Кабели силовые с пропитанной бумажной изоляцией. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

термическое действие тока короткого замыкания в электроустановке: Изменение температуры элементов электроустановки под действием тока короткого замыкания.

электродинамическое действие тока короткого замыкания в электроустановке: Механическое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки.

Читайте так же:
Соединение оптического кабеля с розеткой

интеграл Джоуля: Условная величина, характеризующая тепловое действие тока короткого замыкания на рассматриваемый элемент электроустановки, численно равная интегралу от квадрата тока короткого замыкания по времени, в пределах от начального момента короткого замыкания до момента его отключения.

ток термической стойкости электрического аппарата при коротком замыкании (ток термической стойкости): Нормированный ток, термическое действие которого электрический аппарат способен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

ток электродинамической стойкости электрического аппарата при коротком замыкании (ток электродинамической стойкости): Нормированный ток, электродинамическое действие которого электрический аппарат способен выдержать при коротком замыкании без повреждений, препятствующих его дальнейшей работе.

4 Общие положения

4.1 Исходные положения

4.1.1 При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и электрических аппаратов, а также при проверке на невозгораемость кабелей).

4.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

4.1.3 В качестве расчетного вида КЗ следует принимать:

— при проверке электрических аппаратов и жестких проводников с относящимися к ним поддерживающими и опорными конструкциями на электродинамическую стойкость — трехфазное КЗ;

— при проверке электрических аппаратов и проводников на термическую стойкость — трех- или однофазное КЗ, а на генераторном напряжении электростанций — трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

— при проверке гибких проводников по условию их допустимого сближения во время КЗ — двухфазное КЗ.

4.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание — Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы требованиями соответствующих ведомственных нормативных документов.

4.1.5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость — путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

4.1.6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

5 Электродинамическое действие тока короткого замыкания

5.1 Расчет электродинамических сил взаимодействия проводников

5.1.1 Электродинамические силы взаимодействия , Н, двух параллельных проводников с токами следует определять по формуле

Читайте так же:
Розетка под коаксиальный кабель

, (1)

где — постоянный параметр, Н/А;

— мгновенные значения токов проводников, А;

— длина проводников, м;

— расстояние между осями проводников, м;

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1.

Рисунок 1 — Диаграмма для определения коэффициента формы проводников прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытообразного сечения с высотой профиля 0,1 м и более следует принимать =1,0.

5.1.2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

5.1.3 Максимальную силу , Н, (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

, (2)

где — длина пролета, м;

— ударный ток трехфазного КЗ, А;

— коэффициент, зависящий от взаимного расположения проводников.

Значения коэффициента для некоторых типов шинных конструкций (рисунок 2) указаны в таблице 1.

Проверка электрических аппаратов и проводников на термическую стойкость при коротких замыканиях

Вопрос. Как производится проверка коммутационных электрических аппаратов на термическую стойкость при КЗ?

Ответ. Производится путем сравнения значения интеграла Джоуля, найденного при расчетных условиях КЗ, с его допустимым значением, которое зависит от указанного в технической документации изготовителя нормируемого тока термической стойкости и от соотношения между расчетной продолжительностью КЗ и предельно допустимым (нормируемым) временем воздействия нормированного тока термической стойкости (1.4.20).

Вопрос. При каких условиях обеспечивается термическая стойкость кабелей и проводников при КЗ?

Ответ. Обеспечивается, если температура их нагрева к моменту отключения КЗ не превышает следующих предельных по условию термической стойкости значений, °С:

Вопрос. Как производится проверка кабелей на термическую стойкость в тех случаях, когда для этих кабелей известны значения односекундного тока термической стойкости (допустимого односекундного тока КЗ) Iтер.доп1?

Ответ. Производится путем сравнения интеграла Джоуля Вк с квадратом односекундного тока термической стойкости. Термическая стойкость кабеля обеспечивается, если выполняется условие:

Значения односекундного тока термической стойкости приведены в таблицах настоящей главы Правил (1.4.22).

Вопрос. Как рассматриваются расщепленные провода ВЛ при проверке на термическую стойкость при КЗ?

Ответ. Рассматриваются как провод суммарного сечения (1.4.24).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 7. Завидная стойкость

Глава 7. Завидная стойкость В 1991 г. вышел отчёт «Причины и обстоятельства аварии на 4 блоке Чернобыльской АЭС. Меры по повышению безопасности АЭС с реакторами РБМК» за подписями директора ИАЭ Е. П. Велихова, генерального директора НПО «Энергия» (ВНИИАЭС) А. А. Абагяна,

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ Область применения, общие требования Вопрос. На какие электрические аппараты и проводники распространяется настоящая глава Правил?Ответ. Распространяется на методы выбора электрических аппаратов и проводников

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах Вопрос. По каким параметрам выбираются все электрические аппараты?Ответ. Выбираются по номинальному напряжению и номинальному току. При этом

Читайте так же:
Экономическая плотность тока кабель сшитый полиэтилен

Выбор сечения проводников по плотности тока

Выбор сечения проводников по плотности тока Вопрос. Из какого соотношения определяется целесообразное сечение S, мм2, проводников электроустановок напряжением до 500 кВ?Ответ. Определяется из соотношенияS = I / Jэкн,где I – расчетный ток в часы максимума нагрузки

Проверка проводников по условиям короны и радиопомех

Проверка проводников по условиям короны и радиопомех Вопрос. В каких случаях проводники проверяются по условиям образования короны?Ответ. Проверяются при напряжениях 35 кВ и выше с учетом среднегодовых значений плотности и температуры воздуха на высоте расположения

Глава 1.4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ

Глава 1.4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ Область применения Вопрос. На какие методы проверки электрических аппаратов и проводников распространяется настоящая глава Правил?Ответ. Распространяется на методы проверки

Расчет токов короткого замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания

Расчет токов короткого замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания Вопрос. Какие условия принимаются при составлении расчетной схемы электроустановок напряжением до и выше 1 кВ и расчете токов КЗ с целью проверки

Проверка электрических аппаратов, изоляторов, проводников и несущих конструкций на электродинамическую стойкость при коротких замыканиях

Проверка электрических аппаратов, изоляторов, проводников и несущих конструкций на электродинамическую стойкость при коротких замыканиях Вопрос. Как проверяются на действие тока КЗ элементы цепи, защищенные плавкими предохранителями или автоматическими

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях Вопрос. Исходя из каких нормированных показателей проверяются коммутационные электрические аппараты для отключения цепей при КЗ?Ответ. Проверяются исходя из нормированных

Проверка кабелей на невозгораемость при коротких замыканиях

Проверка кабелей на невозгораемость при коротких замыканиях Вопрос. Какая точка в качестве расчетной принимается при проверке кабелей на невозгораемость при КЗ?Ответ. Принимается точка, находящаяся:для одиночных кабелей, имеющих одинаковое сечение по длине, – в начале

Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов

Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов Вопрос. Какие требования предъявляются к исполнению соединения и присоединения заземляющих, защитных проводников и проводников системы

1.3. Выбор электрических аппаратов и проводников

1.3. Выбор электрических аппаратов и проводников Область применения, общие требованияВопрос 57. В чем состоит выбор электрических аппаратов по условиям продолжительных режимов?Ответ. Состоит в подборе их номинального напряжения по уровню изоляции и номинального тока по

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания Область применения, определенияВопрос 74. Какие электрические аппараты и проводники считаются стойкими при КЗ?Ответ. Считаются такие, которые при расчетных условиях КЗ выдерживают

5.2. Коррозионная стойкость

5.2. Коррозионная стойкость Это способность металла сопротивляться разрушению под химическим воздействием окружающей среды.Чисто химическая коррозия определяется главным образом окислением, электрохимическая коррозия возникает из-за физико-химической неоднородности

Читайте так же:
Схема выключателя с контрольной подсветкой

4.2. Стойкость стегосистем к обнаружению факта передачи скрываемых сообщений

4.2. Стойкость стегосистем к обнаружению факта передачи скрываемых сообщений Для анализа стойкости стеганографических систем к обнаружению факта передачи скрываемых сообщений рассмотрим теоретико-информационную модель стегосистемы с пассивным нарушителем,

4.3. Стойкость недетерминированных стегосистем

4.3. Стойкость недетерминированных стегосистем В предыдущем параграфе было показано, что на основе анализа распределений контейнеров и распределений стего выявляется факт использования стегосистемы. Для этого в рассмотренной теоретико-информационной модели

Измерительный трансформатор тока ТЗЛК(Р)-СВЭЛ-0,66

Трансформатор тока нулевой последовательности ТЗЛК(Р)-СВЭЛ-0,66 изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150 и ГОСТ 15543.1 и применяется для питания схем релейной защиты от замыкания на землю отдельных жил трехфазного кабеля путём трансформации возникших при этом токов нулевой последовательности и устанавливается на кабель.

Описание

Трансформатор предназначен для работы в следующих условиях:

  • верхнее значение температуры окружающего воздуха + 50°С;
  • нижнее значение температуры окружающего воздуха -60°С;
  • относительная влажность воздуха – 100% при +25°С;
  • высота над уровнем моря не более 1000 м;
  • окружающая среда невзрывоопасная; не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы- атмосфера типа II по ГОСТ15150.
  • положение в пространстве – любое.
Технические данные

Трансформаторы тока ТЗЛК-СВЭЛ-0,66 однофазные, по принципу конструкции являются шинными, с литой изоляцией.

Трансформатор содержит одну вторичную обмотку. Первичной обмоткой трансформатора служат жилы трехфазного кабеля, проходящие через внутреннее окно круглого сечения.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЗЛКР-СВЭЛ-0,66
Наименование параметраЗначение
Номинальное напряжение, кВ0,66
Наибольшее рабочее напряжение, кВ0,72
Частота, Гц50
Конструктивное исполнение70100125200
Коэффициент трансформации30/160/1
Количество вторичных обмоток1
Уставка тока срабатывания, АИспользуемая шкала реле, А
Для реле РТ-140/0,20,1-0,20,1
Для реле РТЗ-510,02-0,10,03
Чувствительность защиты (первичный ток, А), не болееРТ-140/0,2РТЗ-51РТ-140/0,2РТЗ-51РТ-140/0,2РТЗ-51РТ-140/0,2РТЗ-51
При работе с 1 тр-ом253253253253
При последовательном соединении 2 тр-ов304304304304
При параллельном соединении 2 тр-ов454,5454,5454,5454,5
Односекундный ток термической стойкости, А140
Климатическое исполнение и категория размещенияУХЛ2
Диаметр проходного отверстия под ввод кабелей, мм72102127205
Габаритные размеры, мм (ширина х высота х толщина)210х170х60250х205х60270х230х60360х310х60
Установочный размер F, мм100130130180
ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ТЗЛК-СВЭЛ-0,66
Тип трансформатора Коэффициент трансформации Размеры, мм Масса max, кг Рис.
М F d D L H K N
ТЗЛК-СВЭЛ-0,66-7030/113710070144144160882,81
ТЗЛК-СВЭЛ-0,66-1001871002061702161134,9
ТЗЛК-СВЭЛ-0,66-12540130125230180238123205,52
ТЗЛК-СВЭЛ-0,66-20060/1180205308250320165408,8
Чертежи
Таблица заменяемости

Ниже приведена таблица заменяемости трансформаторов тока, аналогичными трансформаторами тока компании СВЭЛ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector