Artellie.ru

Дизайн интерьеров
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема питания мощных светодиодов от сети переменного тока

Схема питания мощных светодиодов от сети переменного тока

Светодиодные драйверы MEAN WELL для систем внутреннего освещения

Светодиоды приобрели популярность как средство экономии энергии для освещения общего назначения, но это потребовало разработки эффективных способов управления ими. Светодиоды для устройств освещения помещений выпускаются, например, компанией Lumileds под маркой Luxeon. Для питания нескольких светодиодов может быть достаточно лишь токоограничивающего резистора, но в осветительных приложениях для освещения достаточной области требуется цепь из 20 или более светодиодов. Схема на Рисунке 1, основанная на 100-килогерцовом ШИМ-контроллере NCP1200A компании ON Semiconductor, работающем в режиме управления по выходному току, служит основой недорогого сетевого источника постоянного тока для питания нескольких светодиодов. Хотя обычно разработчики используют его в конфигурации источника напряжения, в этом приложении NCP1200A является источником постоянного тока. На Рисунках 2 и 3 показаны крупные планы схемы.

Рисунок 1.Питающийся от сетевого напряжения источник тока управляет цепочкой мощных светодиодов.

Двухполупериодный мостовой выпрямитель D2-D5 и конденсатор фильтра C1 обеспечивают схему преобразователя IC1 и связанные с ней компоненты постоянным напряжением приблизительно 160 В. Резистор R3 изменяет смещение на выводе подключения датчика тока микросхемы IC1 и при сопротивлении 6.2 кОм позволяет использовать токоизмерительный резистор R6 сопротивлением 1.2 Ом. Уменьшение сопротивления R6 не только снижает затраты по сравнению с токоизмерительным резистором более высокой мощности, но и повышает КПД схемы. Конденсатор C3, стабилизирующий ток цепи обратной связи, на случай обрыва цепочки светодиодов должен имеет номинальное напряжение 400 В. RC-цепочка, образованная элементами R5 и C4, обеспечивает некоторую низкочастотную фильтрацию напряжения на входе CS.

На фотографии схемы Рисунок 1 в верхнем правом углу платы виден дроссель L1.
Рисунок 2.На фотографии схемы Рисунок 1 в верхнем
правом углу платы виден дроссель L1.

Разрядные резисторы R1 и R2 устраняют любую опасность поражения током от контактов вилки сетевого провода при его отсоединении. Хотя вместо них можно было бы использовать один резистор 1 МОм для монтажа в отверстия, два последовательных резистора для поверхностного монтажа по 500 кОм стоят дешевле и обеспечивают между дорожками платы расстояние, необходимое, для приложений с сетевым напряжением. Номинальное напряжение конденсатора C2 должно выбираться в соответствии с напряжением сети. В качестве Q1 можно использовать любые MOSFET с подходящим напряжением пробоя и низким сопротивлением открытого канала, такие, например, как MTD1N60E или IRF820. Дроссель L1 с индуктивностью 500 мкГн должен быть способен работать на частоте 100 кГц и пропускать непрерывный ток более 350 мА. Можно использовать, например, выпускаемые Coilcraft дроссели для поверхностного монтажа серий RFB1010 или DR0810, но можно и поэкспериментировать с самостоятельной намоткой, выбрав сердечник из подходящего материала. При желании схему можно дополнить оптоизолятором IC2, чтобы иметь возможность управления яркостью освещения с помощью ШИМ-сигнала микроконтроллера, используя вход обратной связи микросхемы IC1 (вывод 2).

Эта версия схемы содержит три канала драйвера постоянного тока. Над печатной платой находится собранная светодиодная панель.
Рисунок 3.Эта версия схемы содержит три канала драйвера
постоянного тока. Над печатной платой находится
собранная светодиодная панель.

Для лучшего понимания экономической мотивации использования светодиодов как источников света, сравним светоотдачу цепочки из 20 одноваттных белых светодиодов Luxeon и стандартной лампы накаливания. Каждый светодиод обеспечивает световой поток 45 лм, а вся цепочка из 20 светодиодов – 900 лм. Среднее прямое напряжение, приходящееся на один светодиод, составляет 3.42 В при рассеиваемой мощности 1.197 Вт и прямом токе 350 мА. Таким образом, цепочка из 20 светодиодов рассеивает 23.94 Вт. С учетом невысокого КПД источника питания, оцениваемого значением 80%, потребляемая системой мощность достигает 28.73 Вт при эффективности излучения 900 лм на 29 Вт или 31 лм/Вт. Излучатели Luxeon рассчитаны на 100,000 часов работы, что составляет примерно 11 лет.

Для сравнения, стандартная 60-ваттная лампа накаливания Philips выдает 860 лм в течение 1000 часов, то есть, в течение лишь одного месяца, при эффективности всего 14 лм/Вт. С точки зрения рассеиваемой мощности конструкция на основе светодиодов вдвое эффективнее лампы накаливания. Кроме того, светодиодная конструкция не требует дополнительных трудозатрат на техническое обслуживание для замены ламп.

Читайте так же:
Сенсорный выключатель освещения управляемый с пульта дистанционного управления

Питание светодиода от сети переменного тока

Любой электрический прибор должен иметь источник питания: аккумулятор, батарейку или электрическую сеть. К электросети, от которой происходит питание светодиодов, предъявляются высокие требования. Вот тут и возникает проблема. В наших электросетях переменное напряжение в 220 вольт. Светодиодным лампам требуется прямое напряжение, указанное в его характеристиках. Его значение зависит от конструкции и цвета светодиода и составляет от 1 до 2,2 В. Номинальные показатели тока варьируют от 5 до 20 А. Подключение напрямую с возможными перепадами напряжения приведет к нестабильной работе и уменьшению срока службы изделия. Что же делать, чтобы этого избежать? Приобрести блок питания, его еще называют драйвером для светодиодов. Разберемся, как он работает и как выбрать устройство.

Особенности питания светодиодных светильников

Срок службы светодиодов зависит от качества кристалла, значения рабочего тока, условия эксплуатации. Обычно они работают от тока, максимальное значение которого не превышает 2 А. Однако установленные характеристики требуют оптимальное значение в 0,35 А. Стремление иметь предельный световой поток приводит к увеличению тока. Из-за этого возникает риск перегрева кристалла. Поэтому для светодиодных светильников не рекомендуется использовать в качестве источника питания обычную электросеть без адаптера.

Какие проблемы появляются при подключении прибора к сети напрямую:

  • Светодиод будет иметь плавающую рабочую точку, из-за отрицательной зависимости снижения напряжения от температуры кристалла.
  • Чтобы выровнять ток, понадобится, по меньшей мере, добавить в схемы питания светодиодов дополнительный резистор. Помимо стабилизации тока, он будет рассеивать мощность.
  • Ко всему прочему свою лепту внесет нестабильность выходных данных источника.

Всё это приведет к существенному сокращению эксплуатационного срока, особенно при работе на предельных значениях тока.

Блоки питания для светодиодных светильников

Решить возникающие проблемы поможет использование высокочастотных преобразователей. Они включены в конструкцию блоков питания для светодиодов. От характеристик таких устройств зависит продолжительность эксплуатации и качество освещения подключенных к нему ламп. Особенно важно включать БП в схемы питания мощных светодиодов. Это связано с необходимостью стабилизации электропитания. Подаваемое на прибор напряжение на выходе преобразовывается в стабильный ток. Разбираться в устройстве оборудования нам не к чему. Важнее узнать, какие виды можно встретить в продаже.

Блок питания для светодиодных светильников

С учетом способа расположения, блок питания бывает внутренним или внешним. Первые находятся в корпусе самого прибора. Внешний БП может входить в комплект к изделию или же потребуется его приобрести самостоятельно. При использовании нескольких осветительных приборов можно сэкономить, установив один блок на все.

В случае отключения электричества возможно аварийное питание светодиодных светильников посредством специального устройства БАП. Когда в сети пропадает напряжение, прибор работает от аккумулятора на протяжении 1-3 часов. Всё это происходит в автоматическом режиме, в том числе подзарядка. Такие изделия могут дополнительно обеспечиваться индикатором заряда аккумулятора.

Как выбрать блок питания

Прежде чем покупать блок питания для светодиодных светильников, желательно составить схему включения. На ней нужно указать все приборы и необходимые параметры. Не можете сделать это самостоятельно, обратитесь к специалисту.

Выбирая изделие, обращают внимание на следующие показатели:

  • Потребляемая мощность. При этом учитываются все светильники, подключаемые к устройству.
  • Напряжение питания светодиодного светильника. Диапазон, в пределах которого изделие способно оптимально функционировать без потери яркости, указывается в характеристиках. К примеру, 176-264 В или 150-250 В.
  • Герметичность. Этот показатель зависит от места установки прибора. Более защищенные изделия используются во влажных и пыльных помещениях.

Определяясь с мощностью, нужно добавить не менее 20% «про запас». Зачем это нужно, спросите вы? А затем, что эффективная мощность имеет тенденцию к снижению при колебании окружающей температуры. Причем происходить это может как при ее существенном снижении, так и при повышении.

Читайте так же:
Подключение выключателя с подсветкой с проводками

Итак, подведем итог. Кроме случаев, когда используется автономное питание светодиодного светильника, потребуется блок питания. Устройство позволяет улучшить эффективность и продлить срок службы светодиодных приборов. Надеемся, что статья оказалась для Вас полезной и Вы правильно настроите световые приборы в вашем доме.

Как подключить светодиод к осветительной сети

Как подключить светодиод к осветительной сети Прочитав этот заголовок, кто-то, возможно, спросит: «А зачем?» Да, если просто воткнуть светодиод в розетку, даже включив его по определенной схеме, практического значения это не имеет, никакой полезной информации не принесет. А вот если тот же светодиод подключить параллельно нагревательному элементу, управляемому от терморегулятора, то можно визуально контролировать работу всего прибора. Иногда такая индикация позволяет избавиться от множества мелких проблем и неприятностей.

В свете того, что уже было сказано о включении светодиодов в предыдущих статьях, задача кажется тривиальной: просто поставил ограничительный резистор нужного номинала, и вопрос решен. Но все это хорошо, если питать светодиод выпрямленным постоянным напряжением: как подключили светодиод в прямом направлении, так он и остался.

При работе на переменном напряжении все не так просто. Дело в том, что на светодиод, кроме прямого напряжения, будет воздействовать еще и напряжение обратной полярности, ведь каждый полупериод синусоида меняет знак на противоположный. Это обратное напряжение не будет засвечивать светодиод, но привести его в негодность может очень быстро. Поэтому приходится принимать меры по защите от этого «вредного» напряжения.

В случае сетевого напряжения расчет гасящего резистора следует вести исходя из величины напряжения 310В. Почему? Здесь все очень просто: 220В это действующее напряжение, амплитудное же значение составит 220*1,41=310В. Амплитудное напряжение в корень из двух (1,41) раз больше действующего, и об этом забывать нельзя. Вот такое прямое и обратное напряжение приложится к светодиоду. Именно из величины 310В и следует рассчитывать сопротивление гасящего резистора, и именно от этого напряжения, только обратной полярности, защищать светодиод.

Как защитить светодиод от обратного напряжения

Почти для всех светодиодов обратное напряжение не превышает 20В, ведь никто не собирался делать на них высоковольтный выпрямитель. Как же избавиться от такой напасти, как защитить светодиод от этого обратного напряжения?

Оказывается, все очень просто. Первый способ – последовательно со светодиодом включить обычный выпрямительный диод с высоким обратным напряжением (не ниже 400В), например, 1N4007 – обратное напряжение 1000В, прямой ток 1А. Именно он не пропустит высокое напряжение отрицательной полярности к светодиоду. Схема такой защиты показана на рис.1а.

Второй способ, не менее эффективный, — просто зашунтировать светодиод другим диодом, включенным встречно – параллельно, рис.1б. При таком способе защитный диод даже не должен быть с высоким обратным напряжением, достаточно любого маломощного диода, например, КД521.

Более того, можно просто включить встречно — параллельно два светодиода: поочередно открываясь, они сами защитят друг друга, да еще и оба будут излучать свет, как показано на рисунке 1в. Это уже получается третий способ защиты. Все три схемы защиты показаны на рисунке 1.

Схемы защиты светодиодов от обратного напряжения

Рисунок 1. Схемы защиты светодиодов от обратного напряжения

Ограничительный резистор на этих схемах имеет сопротивление 24КОм, что при действующем напряжении 220В обеспечивает ток порядка 220/24=9,16мА, можно округлить до 9. Тогда мощность гасящего резистора составит 9*9*24=1944мВт, почти два ватта. Это притом, что ток через светодиод ограничен на уровне 9мА. Но длительное использование резистора на предельной мощности ни к чему хорошему не приведет: сначала он почернеет, а потом совсем сгорит. Чтобы этого не произошло, рекомендуется ставить последовательно два резистора по 12КОм мощностью по 2Вт каждый.

Если задаться уровнем тока в 20мА, то мощность резистора составит еще больше — 20*20*12=4800мВт, без малого 5Вт! Естественно, что печку такой мощности для отопления помещения никто себе позволить не сможет. Это из расчета на один светодиод, а что если будет целая светодиодная гирлянда?

Конденсатор – безваттное сопротивление

Схема, показанная на рисунке 1а, защитным диодом D1 «срезает» отрицательный полупериод переменного напряжения, поэтому и мощность гасящего резистора снижается вдвое. Но, все равно, мощность остается весьма значительной. Поэтому, часто в качестве ограничительного резистора применяют балластный конденсатор: ток он ограничит ничуть не хуже резистора, а вот тепла выделять не будет. Ведь недаром часто конденсатор называют безваттным сопротивлением. Этот способ включения показан на рисунке 2.

Схема включения светодиода через баластный конденсатор

Рисунок 2. Схема включения светодиода через баластный конденсатор

Здесь вроде бы все хорошо, даже есть защитный диод VD1. Но не предусмотрены две детали. Во-первых, конденсатор C1 после выключения схемы может остаться в заряженном состоянии и хранить заряд до тех пор, пока кто-нибудь не разрядит его своей рукой. А это, поверьте, обязательно когда-нибудь произойдет. Удар током получается, конечно, не смертельный, но достаточно чувствительный, неожиданный и неприятный.

Поэтому, во избежание такой неприятности, эти гасящие конденсаторы шунтируются резистором с сопротивлением 200…1000КОм. Такая же защита устанавливается и в бестрансформаторных блоках питания с гасящим конденсатором, в оптронных развязках и некоторых других схемах. На рисунке 3 этот резистор обозначен как R1.

Схема подключения светодиода к осветительной сети

Рисунок 3. Схема подключения светодиода к осветительной сети

Кроме резистора R1, на схеме появляется еще резистор R2. Его назначение ограничить бросок тока через конденсатор при подаче напряжения, что помогает защитить не только диоды, но и сам конденсатор. Из практики известно, что при отсутствии такого резистора конденсатор иногда обрывается, емкость его становится намного меньше номинальной. Излишне говорить, что конденсатор должен быть керамический на рабочее напряжение не менее 400В или специальный для работы в цепях переменного тока на напряжение 250В.

На резистор R2 возлагается еще одна немаловажная роль: в случае пробоя конденсатора он срабатывает как предохранитель. Конечно, светодиоды придется тоже заменить, но, по крайней мере, соединительные провода останутся целыми. По сути дела именно так срабатывает плавкий предохранитель в любом импульсном блоке питания, — транзисторы сгорели, а печатная плата осталась почти нетронутой.

На схеме, показанной на рисунке 3, изображен всего один светодиод, хотя на самом деле их можно включить последовательно несколько штук. Защитный диод вполне справится со своей задачей один, но емкость балластного конденсатора придется, хотя бы приблизительно, но все, же рассчитать.

Как рассчитать емкость гасящего конденсатора

Для того, чтобы рассчитать сопротивление гасящего резистора, надо из напряжения питания вычесть падение напряжения на светодиоде. Если соединено последовательно несколько светодиодов, то просто сложить их напряжения, и также вычесть из напряжения питания. Зная этот остаток напряжения и требуемый ток, по закону Ома рассчитать сопротивление резистора очень просто: R=(U-Uд)/I*0,75.

Здесь U – напряжение питания, Uд — падение напряжения на светодиодах (если светодиоды включены последовательно, то Uд есть сумма падений напряжения на всех светодиодах), I – ток через светодиоды, R — сопротивление гасящего резистора. Здесь как всегда, — напряжение в Вольтах, ток в Амперах, результат в Омах, 0,75 — коэффициент для повышения надежности. Эта формула уже приводилась в статье «Об использовании светодиодов».

Величина прямого падения напряжения для светодиодов разных цветов разная. При токе 20мА у красных светодиодов 1,6…2,03В, желтых 2,1…2,2В, зеленых 2,2…3,5В, синих 2,5…3,7В. Самым высоким падением напряжения обладают белые светодиоды, обладающие широким спектром излучения 3,0…3,7В. Нетрудно видеть, что разброс этого параметра достаточно широкий.

Здесь приведены падения напряжения лишь нескольких типов светодиодов, просто по цветам. На самом деле этих цветов намного больше, а точное значение можно узнать лишь в техдокументации на конкретный светодиод. Но зачастую этого и не требуется: чтобы получить приемлемый для практики результат, достаточно подставить в формулу какое-то среднее значение (обычно 2В), конечно, если это не гирлянда из сотни светодиодов.

Для расчета емкости гасящего конденсатора применяется эмпирическая формула C=(4,45*I)/(U-Uд),

где C — емкость конденсатора в микрофарадах, I — ток в миллиамперах, U — амплитудное напряжение сети в вольтах. При использовании цепочки из трех последовательно соединенных белых светодиодов Uд примерно около 12В, U амплитудное напряжение сети 310В, для ограничения тока на уровне 20мА понадобится конденсатор емкостью

C=(4,45*I)/(U-Uд)= C=(4,45*20)/(310-12)= 0,29865мкФ, почти 0,3мкФ.

Ближайшее стандартное значение емкости конденсатора 0,15мкФ, поэтому, для использования в данной схеме придется применить два параллельно соединенных конденсатора. Здесь надо сделать замечание: формула действительна только для частоты переменного напряжения 50Гц. Для других частот результаты будут неверны.

Конденсатор сначала надо проверить

Перед тем, как использовать конденсатор, его необходимо проверить. Для начала просто включить в сеть 220В, лучше через предохранитель 3…5А, и минут через 15 проверить на ощупь, а нет ли заметного нагрева? Если конденсатор холодный, то можно его использовать. В противном случае обязательно взять другой, и тоже предварительно проверить. Ведь все-таки 220В это уже не 12, тут все несколько иначе!

Если эта проверка прошла успешно, конденсатор не нагрелся, то можно проверить, не случилась ли ошибка в расчетах, той ли емкости конденсатор. Для этого надо включить конденсатор как в предыдущем случае в сеть, только через амперметр. Естественно, что амперметр должен быть переменного тока.

Это напоминание о том, что не все современные цифровые мультиметры могут измерять переменный ток: простые дешевые приборы, например, очень популярные у радиолюбителей серии DT838, способны измерять только постоянный ток, что покажет такой амперметр при измерении переменного тока никому не ведомо. Скорей всего это будет цена на дрова или температура на Луне, но только не переменный ток через конденсатор.

Если измеренный ток будет примерно таким, как получилось при расчете по формуле, то можно смело подключать светодиоды. Если же вместо ожидаемых 20…30мА получилось 2…3А, то тут, либо ошибка в расчетах, либо неправильно прочитана маркировка конденсатора.

Выключатели с подсветкой

Здесь можно заострить внимание еще на одном способе включения светодиода в осветительную сеть, используемого в выключателях с подсветкой. Если такой выключатель разобрать, то можно обнаружить, что никаких защитных диодов там нет. Так что же, все что написано чуть выше — бред? Совсем нет, просто надо внимательно приглядеться к разобранному выключателю, точнее к номиналу резистора. Как правило, его номинал не менее 200КОм, может даже несколько больше. При этом, очевидно, что ток через светодиод ограничится на уровне около 1мА. Схема выключателя с подсветкой показана на рисунке 4.

Схема подключения светодиода в выключателе с подсветкой

Рисунок 4. Схема подключения светодиода в выключателе с подсветкой

Здесь одним резистором убивают сразу несколько «зайцев». Конечно, ток через светодиод будет мал, светиться он будет слабо, но вполне ярко, чтобы разглядеть это свечение темной ночью в комнате. А ведь днем это свечение вовсе не нужно! Так что пусть себе светится незаметно.

При этом слабым будет и обратный ток, настолько слабым, что никоим образом не сможет спалить светодиод. Отсюда экономия ровно на один защитный диод, о котором было рассказано выше. При выпуске миллионов, а может даже миллиардов, выключателей в год экономия получается немалая.

Казалось бы, что после прочтения статей о светодиодах, все вопросы об их применении ясны и понятны. Но существует еще немало тонкостей и нюансов при включении светодиодов в различные схемы. Например, параллельное и последовательное соединение или, по-другому, хорошие и плохие схемы.

Иногда хочется собрать гирлянду из нескольких десятков светодиодов, но как ее рассчитать? Сколько можно включить последовательно светодиодов, если есть блок питания с напряжением 12 или 24В? Эти и другие вопросы будут рассмотрены в следующей статье, которую так и назовем «Хорошие и плохие схемы включения светодиодов».

Как включить светодиод в сеть 220 в?

Одним из важных вопросов при работе со светодиодами является его подключение к сети переменного тока и высокого напряжения. Известно, что светодиод от сети 220 В напрямую питаться не может. Как правильно собрать схему и обеспечить питание, чтобы решить проблему?

Электрические свойства

Для ответа на поставленный выше вопрос необходимо изучить электрические свойства светодиода.

Его вольт-амперная характеристика представляет собой крутую линию. Это значит, что при увеличении напряжения даже на очень малую величину ток через излучающий полупроводник резко возрастает. Повышение тока ведет за собой разогрев светодиода, в результате чего он может просто сгореть. Эту проблему решают, включая в цепь ограничительный резистор.

У светодиода маленькое значение обратного пробивного напряжения (около 20 вольт), поэтому его нельзя подключать к сети 220 вольт с переменным током. Чтобы исключить протекание тока в противоположном направлении, в цепь необходимо включить диод или навстречу первому светодиоду включить второй. Подключение должно быть параллельным.

Image 001

Итак, мы знаем, что любая схема подключения светодиода к сети 220 вольт должна содержать резистор и выпрямитель, иначе питание будет невозможным.

Для чего нужна такая схема? Прежде всего, для конструкции индикатора сети. Светодиодная лампочка может быть отличным индикатором, помогающим определять, включен электроприбор в сеть или нет. Ее добавляют в схему выключателей и розеток, чтобы легко находить их в темноте.

Такой индикатор начинает светиться при напряжении всего в несколько вольт. При этом он потребляет минимальное количество электроэнергии за счет малого (несколько мили ампер) тока.

Какой резистор использовать?

Чтобы подобрать оптимальное сопротивление резистора, необходимо воспользоваться законом Ома.

Предположим, мы взяли для индикатора красный светодиод с номинальным значением тока 18мА и прямым напряжением 2,0 Вольт.

(311-2)/0,018=17167 Ом=17 кОм

Объясним, откуда взялось число 311. Это пик синусоиды, по которой меняется напряжение в нашей сети. Не вдаваясь в область математики со всеми ее вычислениями, можно просто сказать, что пиковое напряжение составляет 220*√2.

Иногда встречаются схемы, в которых отсутствует выпрямляющий диод. В этом случае сопротивление необходимо увеличить в несколько раз, чтобы сделать ток меньше и обезопасить индикаторную лампочку от перегорания.

Элементарная схема индикатора тока

Что необходимо для изготовления самого простого индикатора, у которого питание происходит от сети 220 вольт? Вот перечень:

  • обычный индикаторный светодиод любого цвета, какой вам нравится;
  • резистор от 100 до 200 кОм (чем больше сопротивление, тем менее ярко будет светиться лампочка);
  • диод с обратным напряжением 100 Вольт или больше;
  • маломощный паяльник, чтобы не перегреть светодиод.

Поскольку количество деталей минимальное, то плата в монтаже не используется. Подключение индикатора осуществляется параллельно электроприбору.

Image 002

Для тех, у кого нет желания бегать в поисках диода, производители придумали готовый двухцветный индикатор в виде встроенных в один корпус двух светодиодов разного цвета. Обычно это красный и зеленый цвета. В этом случае количество деталей схемы еще больше уменьшается.

Есть и другие схемы подключения, в которых резистор заменяют конденсатором или применяют диодные мосты, транзисторы и т. д. Но какие бы конструктивные особенности не вносились, основной задачей является выпрямление тока и понижение его до безопасной величины.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector