Artellie.ru

Дизайн интерьеров
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Включение секционного выключателя В5 при отключении выключателей питающих линий В1 или ВЗ происходит так же, как в схемах АВР, рассмотренных выше. К ТН2 подключено также реле частоты РЧ, с помощью которого предотвращается действие АВР в случае отключения выключателя В4 питающей линии 7 / 2 от действия АЧР. Реле частоты, уставка срабатывания которого на 0 2 — 0 3 Гц превышает уставку срабатывания АЧР на питающей подстанции, срабатывает при понижении частоты в энергосистеме и подает плюс на обмотку промежуточного реле РПЧ.  [1]

Происходит блокировка включения вводных и секционных выключателей .  [2]

АВР осуществляется включением секционного выключателя при обесточении одной секции шин. АВР происходит только после того, как исчезнут ток в линии и напряжение на одной из секций шин. Для этого в схеме применено реле минимального напряжения, питающееся от трансформатора напряжения одной из секций шин, и реле тока, питающееся от трансформатора тока линии.  [4]

АВР однократно действует на включение секционного выключателя СВ на ГПП или РП или секционного автоматического выключателя САв на ТП, которые в нор-м Зльном режиме работы системы находятся в отключенном состоянии. Питание потребителей при этом восстанавливается.  [5]

В схемах неявного резервирования ( например, включение секционного выключателя действием устройства АВР) и в схемах замены резервного источника наименее загруженным рабочим источником предварительная, неотключаемая, нагрузка источника электроснабжения может быть учтена на основании опыта эксплуатации или задана при анализе возможных режимов.  [6]

Блок-контакт 1В, замыкаясь, подает питание электромагниту включения ЭВ секционного выключателя , который включается.  [7]

Блок-контакт В1, замыкаясь, подает питание электромагниту включения ЭВ секционного выключателя , который включается.  [9]

Из рассмотренной схемы управления следует, что здесь исключается включение секционного выключателя на короткие замыкания. Поэтому снимаются требования однократности действия УАВР и ускорения защиты на секционном выключателе после действия УАВР. При оперативном управлении выключателями, рассмотренную автоматику необходимо вывести из действия.  [10]

Главные трансформаторы ГПП могут включаться временно на параллельную работу включением секционного выключателя на стороне 6 — 10 кВ, когда это допустимо по токам КЗ и необходимо, например в период пуска крупных электродвигателей.  [11]

Кроме того, имеется возможность неуспешного самозапуска, происходящего при включении секционного выключателя по схеме ABF, когда пусковые токи двигателей сцеплены с одной ветвью реактора.  [12]

Если подстанция имеет два трансформатора, работающих на разные секции, то включение секционного выключателя от устройства АВР после отключения одного из трансформаторов допускается в условиях, когда такое включение не вызовет недопустимой перегрузки второго работающего трансформатора.  [14]

Если подстанция имеет 2 трансформатора, работающих на разные секции, то включение секционного выключателя от устройства АВР после отключения одного из трансформаторов допускается в условиях, когда такое включение не вызовет недопустимой перегрузки второго работающего трансформатора.  [15]

ДЗШ 110-220 кВ — Сборные шины РУ

1. СБОРНЫЕ ШИНЫ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
Распределительные устройства (РУ) высокого напряжения, выполняемые в схемах электрических соединений электростанций и подстанций, являются одним из наиболее важных и ответственных элементов энергосистемы. Через сборные шины РУ электростанций происходит выдача мощности в энергосистему. По транзитным линиям связи, объединяющим шины крупных подстанций, обеспечиваются перетоки мощности между отдельными узлами энергосистемы. От сборных шин отходят линии к центрам потребления нагрузки.
Различают следующие основные схемы систем шин (СШ).
Одиночная система (секция) шин (рис. 1,о). Каждое присоединение подключается через свой отдельный выключатель и шинный разъединитель. В некоторых случаях отдельные присоединения (обычно трансформаторы) могут подключаться через разъединитель или отделитель. Такое исполнение предъявляет к схемам защиты шин и трансформатора дополнительные требования.
К (недостаткам схемы относится необходимость отключения всех присоединений секции при выводе ее в ремонт или при ее повреждении, вынужденное обесточение всех подключенных к данной секции линий и трансформаторов, работающих в режимах тупикового питания, размыкание объединявшихся через шины подстанции транзитов.
Одиночная секционированная система шин (рис. 1,6). Каждое присоединение, как и в предыдущей схеме, подключается к шинам через один выключатель и один шинный разъединитель. Допускается в отдельных случаях подключение одного трансформатора на секцию без выключателя. Связь секций через секционный выключатель (СВ) Q7 обеспечивает разделение схемы при повреждении одной из секций и не требует полного обесточивания подстанции при ремонте секции. Схема обеспечивает более надежную связь между отдельными узлами энергосистемы в нормальных, ремонтных и аварийных режимах.
К недостаткам схемы следует отнести необходимость отключения всех присоединений данной секции при выводе ее в ремонт или при ее повреждении, а также возможность полного погашения подстанции при повреждении Q7, являющегося общим элементом для обеих секций.

Рис. 1. Одиночная система шин: а — несекционированная; б — секционированная

Схема с двумя системами (секциями) шин и двумя выключателями на присоединение (рис. 2,о). В нормальном режиме все выключатели и разъединители, указанные на схеме, включены. К достоинствам схемы относится сохранение в работе всех присоединений при повреждении или ремонте системы шин. Очевидно, что схема с двумя выключателями на присоединение значительно дороже других вариантов исполнения, поэтому она применяется в наиболее ответственных точках энергосистемы, требующих повышенной надежности, на напряжении 220 кВ и выше. На подстанциях такого типа трансформаторы или автотрансформаторы (не более одного на секцию) могут подключаться на секцию без выключателя, что обеспечивает определенное удешевление объекта (рис. 2,6). При двух транзитных линиях и двух автотрансформаторах такая схема получила наименование «четырехугольника» или «квадрата» (рис. 2, в).

Читайте так же:
Сравнительная таблица автоматических выключателей

Рис. 2. Двойная система шин с двумя выключателями на присоединение:
а — с выключателями в цепи каждого присоединения; б — без выключателей в цепи автотрансформаторов; в — четырехугольник; А1. А2 — первая и вторая системы шин

Рис. 3. Двойная система шин с тремя выключателями на два присоединения («полуторная» схема)

Рис. 4. Двойная система шин с фиксированным распределением элементов с одним выключателем на присоединение
Схема с двумя системами шин и тремя выключателями на два присоединения («полуторная»). На рис. 3
приведена такая схема с тремя полями, девятью выключателями и шестью присоединениями. В нормальном режиме все выключатели и разъединители, указанные на схеме, включены. Схема относительно дорогая, но обладает повышенной надежностью и применяется на крупных электростанциях. Как и в предыдущей схеме, при погашении одной из систем шин ни одно из присоединений не обесточивается, не нарушается связь данной подстанции с энергосистемой.
Во всех рассмотренных схемах каждое присоединение, а при числе выключателей на присоединение более одного — каждый выключатель, жестко зафиксированы за данной системой шин. Перевод его на другую секцию без изменения монтажа первичной схемы невозможен.

Схема с двумя системами шин с фиксированным присоединением элементов (рис. 4).

Присоединение подключается к системам шин через один выключатель и два шинных разъединителя, с помощью которых оно может подключаться к одной из двух систем шин. В целях обеспечения избирательной (селективной) работы защиты шин (см. ниже) каждое присоединение закреплено (зафиксировано) за одной из систем шин. Наличие двух шинных разъединителей на присоединение позволяет выводить в ремонт систему шин без отключения линий и трансформаторов, переводя их предварительно на другую систему шин. Порядок операций при этом следующий. При включенном шиносоединительном выключателе (ШСВ) Q5 поочередно включаются разъединители всех присоединений на остающуюся в работе систему шин, затем также поочередно отключаются разъединители, соединяющие присоединения (кроме ШСВ) с отключаемой системой шин. Далее отключаются ШСВ Q5 и его шинные разъединители, и освобожденная система шин может быть выведена в ремонт.
Схема позволяет переводить присоединения с одной системы шин на другую для уменьшения перетока через ШСВ, при неисправности шинного разъединителя одного из присоединений и т. д. В указанных случаях защита шин должна работать в режиме нарушенной фиксации.
При необходимости вывода в ремонт ШСВ или по другим системным соображениям допускается раздельная работа систем шин с отключенным ШСВ. Однако во многих случаях это приводит к резкому изменению расчетных режимов выбора уставок релейной защиты прилежащей сети и как следствие — к возможным неправильным действиям защит. Поэтому допустимость такого режима должна предварительно оцениваться. Режим допустим всегда при двух и в большинстве случаев при трех питающих источниках на защищаемой подстанции. При необходимости отключения ШСВ и недопустимости раздельного режима работы систем шин все присоединения переводятся на одну систему шин либо системы шин объединяются включением обоих шинных разъединителей на двух-трех присоединениях.
К недостаткам схемы относится возможность одновременного аварийного отключения обеих систем шин, например при разрушении одного из шинных разъединителей в процессе оперативных переключений при переводе присоединений с одной системы шин на другую.

Схема с двумя секционированными системами шин (рис. 5).

Рис. 5. Двойная секционированная система шин с фиксированным распределением элементов: B1, В2 — первая и вторая секции
А1

Рис. 6. Двойная система шин с фиксированным распределением элементов и с обходной системой шин
Схема обладает повышенной надежностью; практически при любых видах повреждения полное обесточение подстанции невозможно. Схема применяется при числе присоединений более 15.
В настоящее время первичные схемы по рис. 1,а, б, 4 и 5 дополняются обходной системой шин (ОСШ) и обходным выключателем (ОВ). На рис. 6 приведена схема с ОСШ (A3) и ОВ (Q6) применительно к двойной системе шин с фиксированным присоединением элементов. Наличие обходной системы шин создает значительные удобства в условиях эксплуатации, позволяет проводить ремонты выключателей без отключения линий или трансформаторов. При этом необходимо учитывать, что время капитального ремонта выключателей длится обычно от 3—4 до 12 дней. Возможность выполнения текущих ремонтов выключателей без отключения присоединений также повышает надежность первичной схемы подстанции. Наличие ОСШ повышает гибкость схемы, ее маневренность при производстве ремонтов, а также при аварийных режимах, при повреждениях или неисправностях выключателей.
На рис. 6 показан случай включения через ОСШ линии W3 в предположении, что нормально W3 была включена на первую систему шин At. Порядок перевода линии следующий. Включаются шинный разъединитель обходного выключателя Q6 и разъединитель Q6 на A3. Включением Q6 опробуется обходная система шин, после чего Q6 отключается. Затем включаются разъединитель линии W3 на A3 (нормально все разъединители на A3 отключены) и Q6, сразу же отключается выключатель Q3 линии W6. Присоединение переведено на ОСШ. После отключения шинных и линейного разъединителей линии W3 ее выключатель Q3 может быть выведен в ремонт. На защитах OB Q6 предварительно выполняются уставки, соответствующие режиму работы ОВ на данную линию.
Обходная система шин с отдельным ОВ выполняется при числе присоединений на подстанции более шести. При меньшем количестве присоединений используется схема совмещенного с обходным секционного или шиносоединительного выключателя. В нормальном режиме выключатель используется как СВ или ШСВ. При необходимости замены одного из выключателей обходным секции (системы шин) объединяются или, при допустимости режима, работают раздельно, а выключатель используется как ОВ. На рис. 7 применительно к первичной схеме с двумя секциями приведен вариант совмещения
СВ с ОВ. На рис. 7, а приведена первичная схема в нормальном режиме, на рис. 7,6 — при замене выключателя линии W1 обходным при условии, что раздельная работа секций недопустима. При этом на рис. 7, б показано размещение трансформаторов тока для схемы дифференциальной защиты шин (ДЗШ). В нормальном режиме объединение секций выполняется путем включения разъединителей секционного выключателя Q5 на первую секцию В1 и на ОСШ A3, разъединителя перемычки между ОСШ A3 и секцией В2 при включенном СВ Q5.
В1 82

Читайте так же:
Селективность модульных автоматических выключателей

Рис. 7. Одиночная секционированная система шин с обходной системой шин и совмещенным секционным и обходным выключателями:
а — режим работы с секционным выключателем; б— режим работы с обходным выключателем при объединении систем шин
Переход от схемы на рис. 7, а к схеме на рис. 7, б выполняется следующим образом. На СВ защиты настраиваются с уставками, обеспечивающими работу заданной линии в режиме с обходным выключателем. Защита проверяется током нагрузки и остается отключенной. Включается разъединитель СВ Q5 на секцию В2, отключается СВ Q5 и разъединитель в перемычке между A3 и В2. Включаются защиты СВ, включается разъединитель линии W1 на ОСШ A3, включается OB Q5 и сразу же отключается выключатель присоединения Q1.
Использование совмещенного с СВ или ШСВ обходного выключателя усложняет схему защиты шин, требует в процессе изменения первичной схемы большего количества операций с испытательными блоками в оперативных и токовых цепях защит.
В связи с требованиями высокой надежности к схемам защиты шин, тяжелыми последствиями при ложном или излишнем ее срабатывании, а также в соответствии с требованиями [1] операции по переводу присоединений с рабочего выключателя на ОВ и с ОВ на рабочий выключатель, включая все операции на первичном оборудовании и в цепях релейной защиты, целесообразно выполнять по специально разработанным программам.

5.2. Автоматическое включение резерва

ляет 90-95 %, что и обуславливает его широкое применение. Устройство АВР может выполняться как на оперативном переменном так и на оперативном постоянном.

Действие АВР должно быть однократным. Пусковым органом схемы является реле минимального напряжения, которое обеспечивает запуск схемы АВР при исчезновении напряжения на питающем источнике.

Схема АВР выполняется в одном из двух вариантов:

1. В случае питания потребителей от двух независимых источников,

когда шины низкого напряжения секционированы, переключение с одной секции шин на другую осуществляется с помощью секционного выключателя оснащенного устройством АВР.

2. Все электропотребители питаются от одного рабочего ввода. На резервном вводе от соседней подстанции устанавливается устройство АВР.

Схема АВР не должна работать до отключения выключателя рабочего источника для предотвращения включения рабочего ввода на короткое замыкание.

5.2.1. Схема АВР резервного ввода

Рассмотрим схему АВР, выполненную на резервном вводе (рис. 46). В

нормальном режиме выключатель SF 1 включен, SF 2 – отключен, питание осуществляется от трансформатора Т , контроль за напряжением на шинах осуществляет реле напряжения KV , включенное через трансформатор напряжения TV . При исчезновении напряжения на шинах, реле KV теряет

возбуждение и замыкает свои контакты в цепи 3, реле времени KT замыкает свои контакты KT:1, электромагнит отключения YAT 1 отключает автомат SF1 .

Читайте так же:
Что будет если подключить автоматический выключатель наоборот

При этом блокконтакты SF 1:1 замыкаются. Питание получает блокировочное реле 2 К , которое замыкает свои контакты в цепи 7. Электромагнит включения

YAC 2 включает выключатель SF 2 резервного ввода, при этом его блокконтакты

SF 2:1 в цепи 4 размыкаются и блокировочная катушка реле 2К оказывается включенной последовательно с высокоомной катушкой промежуточного реле

KV

Рис. 46. Схема АВР резервного ввода

Мощности для срабатывания контакта реле 2 К недостаточно. Выполнено это для того, чтобы в случае включения резервного ввода на короткое замыкание выключатель SF 2 был отключен защитой и повторного включения не произошло, т.к. цепь питания электромагнита включения YAC 2 разорвана

контактами реле 2 К . Переключатель SA служит для перевода схемы из ручного режима в автоматический. Для возвращения схемы в исходное положение так же служит переключатель SA , который обесточивает катушку промежуточного реле KL .

5.2.2. Схема АВР на секционном выключателе

Для приведения схемы автоматического включения резервы на секционном выключателе в исходное положение включается автома-

тический выключатель SF , переключатели SA 1; SA 2 устанавливаются в положение АВР (рис. 47).

При этом питание приходит в цепочки 10,11,12, запускается двигатель,

который взводит пружину привода секционного выключателя Q 3. По окончании взвода пружинного привода срабатывает конечный выключатель

SQ , двигатель останавливается и в цепочке 7 замыкаются контакты SQM , кроме того питание приходит на реле блокировочное KBS , которое замыкает свои блок-контакты KBS :1. Питание получает электромагнит включения секционного выключателя YAC 3, но поскольку включен он последовательно с высокоомной лампой HL и сопротивлением R 1, мощности для его срабатывания недостаточно. Загорается сигнальная лампа готовности привода

Рассмотрим работу схемы АВР находящейся в исходном положении .

При исчезновении напряжения на первой секции шин, реле напряжения KV 1,

KV 2 теряют возбуждение, замыкают свои контакты в цепи 1. Реле времени KT 1

с выдержкой времени замыкает контакты в цепи 2, реле промежуточное KL 1 – в

цепи 3; электромагнит отключения YAT 1 выключает выключатель Q 1. Его блок-

контакты в цепи 7 Q 1:3 замыкаются, шунтируют лампу HL с резистором

R 1.Катушка электромагнита YAC 3 получает полное питание и секционный выключатель Q 3 включается.

Рис. 47. Схема АВР на секционном выключателе:

а — упрощенная схема подстанции и схема подключения реле напряжения; б — схема АВР

Блок-контакты выключателя Q 1 в цепи 11 размыкаются, обесточивая реле

KBS , которое с выдержкой времени размыкает свои контакты в цепи 7 (после срабатывания YAC 3). Это необходимо для того, чтобы в случае включения выключатель Q 3 на короткое замыкание, он отключился защитой, и повторного включения не произошло, так как контакты KBS :1 разорвали цепь питания электромагнита YAC 3.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Секционный выключатель схема подключения

Повышение надежности электроснабжения остается одной из насущных проблем российской электроэнергетики, поэтому системы автоматического ввода резерва (АВР) находятся в центре внимания специалистов.

В схеме, предлагаемой московским автором, реализован экономически целесообразный подход к решению задачи автоматического подключения к системе электропитания резервных источников в случае аварии основных источников.

Автоматический ввод резерва (АВР) — важное звено в системе поддержания электроснабжения потребителей при исчезновении питания. Предлагаемый вариант схемы с использованием трех источников энергии и двух секций нагрузки — АВР "3 в 2" позволяет реализовать надежный, понятный, ремонтопригодный АВР на базе стандартных блоков управления, которые выпускаются многими производителями.

Традиционная схема

Классическая схема АВР "3 в 2" основывается на двух независимых сетевых вводах и одном электроагрегате (ЭА), например дизель-генераторной установке. Нагрузка распределяется на две секции, связанные секционным выключателем (рис. 1).

В нормальном режиме каждая секция нагрузки получает питание от своего сетевого источника через Ввод 1 и Ввод 2. ЭА в этом режиме отключен вместе с секционным выключателем Q3.

При нарушении питания со стороны, например, Ввода 1 схема АВР "3 в 2" отключает вводной автоматический выключатель Q1 и включает секционный выключатель Q3. Команда на запуск ЭА не поступает.

Как правило, через какое-то время качество напряжения на Вводе 1 восстанавливается и схема должна отключить секционный выключатель Q3 и включить выключатель Q1 Ввода 1.

Но если после нарушения питания (потери) со стороны Ввода 1 происходит потеря и Ввода 2, то схема АВР "3 в 2"должна отключить все вводные автоматические выключатели Q1 и Q2, включить секционный автоматический выключатель Q3 и после выхода напряжения ЭА на номинальные параметры подключить его к нагрузкам секций 1 и 2, включив Q4. И, как принято, схема должна отработать обратный путь: восстановить нормальную или преднормальную (работа на одном сетевом вводе) схему, предварительно подав сигнал на останов ЭА.

На практике эта логика реализуется, как правило, на основе микропроцессорных программируемых реле, реле контроля фаз, промежуточных реле. Релейная схема очень громоздкая: много режимов, блокировок, регулировок порогов напряжения, уставок времени включения/отключения автоматических выключателей. При этом на практике получается, что решения этого АВР далеки от совершенства.

Читайте так же:
Схема блок трансформатор линия с автоматическим выключателем

Каждый производитель НКУ пишет свою программу, старается ее закрыть паролями от вмешательства потребителя и конкурентов, потом создает "Руководство по эксплуатации", пытаясь дать рекомендации по пусконаладке и обслуживанию. Обычно это заканчивается выездом специалиста компании-изготовителя НКУ на объект и запуском АВР после доработок на месте.

В дальнейшем любая внештатная ситуация или сбой программы в программируемом реле вынуждают потребитель снова вызывать специалиста, причем, если у НКУ закончился срок гарантийного обслуживания, то специалист едет из Москвы за 5000 км за счет потребителя. Из-за всего этого АВР зачастую переводят в ручной режим.

Рациональная схема

Предлагаемая схема АВР "3 в 2" учитывает все возможные варианты работы. Решение не требует дополнительных знаний по программированию контроллеров, а также не вызывает сложностей в пусконаладке и последующей эксплуатации. Эта схема проста, надежна и ремонтопригодна.

Если рассмотреть основные режимы работы схемы, то можно выделить режим питания нагрузок секций от сетевых источников и режим питания всей нагрузки от ЭА. По сути, эти два режима независимы и каждый при своей активности должен блокировать работу другого. Поэтому целесообразно рассмотреть работу схемы "3 в 2" как комбинацию схем "2 в 2" и "2 в 1 ЭА".

Итак, схема "2 в 2" — это два независимых сетевых источника, две секции нагрузки, соединенные секционным выключателем. В нормальном режиме каждый сетевой источник питает свою секцию, а в аварийном обе секции получают питание только от одного сетевого источника.

Схема "2 в 1 ЭА" — это один сетевой источник, один автономный ЭА, например ДГУ, одна нагрузка, которая получает в нормальном режиме питание от сетевого источника, а в аварийном от ЭА. На рис. 2 представлен фрагмент принципиальной схемы подключения блоков управления АВР. Блок управления АВР1 "2 в 2" контролирует параметры напряжения на сетевых вводах трансформаторов Т1 и Т2. По параметрам этих напряжений в соответствии с логикой, заложенной в программе АВР, этот блок управляет вводными автоматическими выключателями Q1, Q2 и секционным автоматическим выключателем Q3.

Блок управления АВР2 "2 в 1 ЭА" контролирует параметры напряжения на одном из сетевых вводов трансформаторов Т1 и Т2. Сетевое напряжение подается от мини-АВР, реализованного на механически сблокированных промежуточных контакторах 1К1 и 1К2.

Контакторы управляются с помощью реле выбора фаз РВФ (рис. 3). На вход этого реле подаются любые три фазных напряжения, на выходе всегда одна из фаз. Приоритетом является первая фаза (через К1). Если она пропадает, то подключается вторая (через К2), если пропадает и вторая, то подключается третья фаза (через К3).

Катушки управления промежуточных контакторов 1К1, 1К2 управляются с помощью релейных выходов К1 и К2. На рынке представлено множество устройств, реализующих функции РВФ. Основное их назначение — быстрое переключение фаз (время переключения различно у производителей).

Кроме того, в схеме присутствует источник бесперебойного питания (ИБП) на 500 ВА (рис. 3) для управления схемой АВР на момент запуска ЭА при полной потере сетевых вводов. Его можно оперативно отключить посредством байпасного выключателя нагрузки QS1 и при необходимости заменить аккумуляторные батареи.

Таким образом, блок АВР2 не участвует в работе общей схемы, пока есть качественное напряжение хотя бы на одном сетевом вводе. Если напряжение пропадает на обоих сетевых вводах, то блок АВР2 подает сигнал на отключение вводных автоматических выключателей Q1, Q2, затем формирует команду на запуск ЭА и при выходе параметров напряжения на зажимах ЭА на номинальные значения включает автоматические выключатели Q3 и Q4. При необходимости, одновременно с их включением можно сформировать сигнал на отключение части нагрузок секций 1 и 2. Для этого автоматические выключатели отходящих линий секций 1 и 2 должны быть снабжены независимыми расцепителями или моторными приводами.

В итоге организуется надежное электроснабжение от двух сетевых источников и одного ЭА. Назвать эту схему бесперебойной не совсем корректно, так как существуют необходимые временные задержки в переключениях, но она обеспечивает четкую работу оборудования в автоматическом режиме.

Нужно отметить, что в ассортименте большинства мировых производителей блоков АВР на микропроцессорной основе представлены блоки управления для схем АВР "2 в 2" и "2 в 1 ЭА". Цена этих блоков у разных изготовителей находится в диапазоне от 6000 до 40000 руб. за единицу, причем, как правило, эти устройства обладают одинаковой функциональностью: "всё в одном". Только одни производители предусматривают больше переключателей основных уставок и регулировок, открывают доступ к управлению режимами, а другие их жестко фиксируют и прячут. Немаловажно, что эти стандартные блоки прошли многочисленные тесты и испытания, снабжены понятной инструкцией по их применению.

Читайте так же:
Розетки выключатели фирмы макел

Контроль ложного отключения секционного выключателя шин двухтрансформаторной подстанции

Суров, Л. Д. Контроль ложного отключения секционного выключателя шин двухтрансформаторной подстанции / Л. Д. Суров, В. В. Филиппов, Т. Б. Сурова. — Текст : непосредственный // Молодой ученый. — 2014. — № 5 (64). — С. 103-105. — URL: https://moluch.ru/archive/64/10312/ (дата обращения: 27.12.2021).

Для повышения надежности электроснабжения в сельских распределительных сетях используют двухтрансформаторные подстанции, с питанием от разных линий электропередач с двумя секциями шин, которые соединены секционным выключателем. Этот выключатель в нормальном режиме работы подстанции отключен, а в отдельных случаях, например, при возникновении аварийных ситуаций или при проведении технического обслуживания, он включен. При этом работа подстанции переходит в режим подстанционного резервирования и питание потребителей будет осуществляться от одного трансформатора. Изношенность оборудования или сбой в системе автоматики управления секционным выключателем при работе в режиме подстанционного резервирования могут привезти к его отключению. Такое отключение будет ложным и может быть принято обслуживающим персоналом за аварийное [1].

С целью получения информации о ложном отключении секционного выключателя шин двухтрансформаторной подстанции при работе кольцевой сети в режиме подстанционного резервирования разработан способ [2].

Согласно этому способу контролируют наличие напряжения на шинах и тока в линии основного источника питания. И, если напряжение на шинах и ток в линии основного источника питания исчезнут, а напряжение на шинах резервного источника питания не исчезло, то делают вывод о ложном отключении секционного выключателя шин двухтрансформаторной подстанции.

Для реализации такого способа разработана структурная схема. Она состоит: из силового трансформатора 1 основного источника питания, вводный выключатель (ВВ) 2 шин основного источника питания, головного выключателя 3 линии основного источника питания, секционирующего выключателя (СВ) 4 линии основного источника питания, выключателя 5 сетевого пункта автоматического включения резерва (АВР), СВ 6 линии резервного источника питания, головного выключателя 7 линии резервного источника питания, секционного выключателя 8 шинного пункта АВР, ВВ 9 шин резервного источника питания, трансформатор 10 резервного источника питания, датчика рабочего тока (ДРТ) 11, датчиков напряжения (ДН) 12 и 13, элементов НЕ 14 и 15, элемента И 16 и регистрирующее устройство (РУ) 17.

Диаграммы сигналов на выходе элементов, показанных на рис.1, имеют вид: 18 — на выходе элемента 11, 19 — на выходе элемента 12, 20 — на выходе элемента 13, 21 — на выходе элемента 14, 22 — на выходе элемента 15, 23 — на выходе элемента 16, 24 — на выходе элемента в РУ 17. На рис.2, кроме диаграмм выходных сигналов, также показаны: t1 — момент времени ложного отключения секционного выключателя 8.

Рис.1. Упрощенная схема кольцевой сети при работе в режиме подстанционного резервирования и структурная схема способа

Работа этой схемы осуществляется следующим образом.

В нормальном режиме работы подстанции выключатели 2,3,4,6,7 и 9 включены, а выключатели 5 и 8 отключены. В режиме подстанционного резервирования выключатели 3,4,6,7,8 и 9 включены, а выключатели 2 и 5 отключены. Поэтому на выходах датчиков ДРТ 11, ДН 12 и ДН 13 существуют сигналы (рис.2, диагр. 18, 19, 20 соответственно). При этом на выходах элементов НЕ 14 и 15 сигналов нет (рис.2, диагр. 21 и 22 соответственно), поэтому, схемы находятся в режиме контроля.

В случае ложного отключения СВ 8, произошедшего по причине какой-либо неисправности с выходов ДРТ 11 и ДН 12 сигналы исчезнут (рис.2, диагр. 18, 19 соответственно, момент времени t1). При этом появятся сигналы на выходах элементов НЕ 14 и 15 (рис.2, диагр. 21 и 22 соответственно), которые поступят на первый и второй входы элемента И 16. Наличие напряжения на трансформаторе 10 резервного источника питания обеспечивает наличие выходного сигнала на ДН 13 (рис.2, диагр. 20) который присутствует на третьем входе элемента И 16, поэтому, в момент времени t1 И 16 срабатывает и его выходной сигнал (рис.2, диагр.23) поступив в РУ 17 обеспечит появление в нем информации о том, что СВ 8 отключился ложно.

Рис.2. Диаграмма выходных сигналов элементов структурной схемы

Таким образом, предлагаемый способ позволяет в режиме реального времени получить информацию о ложном отключении секционного выключателя шин при работе кольцевой сети в режиме подстанционного резервирования. Это позволит сократить до минимума перерыв в электроснабжении потребителей и уменьшить негативные последствия, связанные с недоотпуском электрической энергии.

1. Белов Н.В., Электротехника с основами электроники / Н.В.Белов. – Учебное пособие. – СПб; Издательство «Лань», 2012. – 432с.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector