Artellie.ru

Дизайн интерьеров
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Уменьшить ток подсветки в телевизорах

Уменьшить ток подсветки в телевизорах

В настоящее время многие производители телевизоров устанавливают сомнительный тепловой режим светодиодов подсветки, что негативно влияет на долговечность работы устройства. В половине случаев уже после 2-3 лет эксплуатации выходят из строя светодиоды вследствие перегрева, обычно это видно по разрушенному люминофору на корпусах диодов. Гарантийный срок, как правило, светодиоды отработать всё же успевают.

Даже если максимально допустимый ток в пределах нормы, охлаждение светодиодов не всегда достаточно эффективное, что видно по следам перегрева – тёмным пятнам на текстолитовых планках с обратной стороны. А в современных телевизорах LG применяются диоды с внешним люминофорным покрытием, которое через год или два осыпается и кристалл напрямую светит фиолетовым цветом. Как может навредить здоровью пользователей такой источник ультрафиолетового излучения, пока никто не задумывается.

Китайские производители через Aliexpress поставляет диоды и светодиодные планки комплектами в любом ассортименте, но платит за них и за ремонт всё тот же счастливый обладатель телевизора.

После замены одного или нескольких неисправных светодиодов, полезно на остальные внимательно посмотреть, если люминофор растрескался, целесообразно такие диоды заменить все. Если замерить падение напряжения на перегретых светодиодах, оно будет несколько больше, чем у соседних менее изношенных или новых, что косвенно свидетельствует о наличии паразитного активного сопротивления (ESR). Дальнейшая эксплуатация таких светодиодов ещё более сомнительна.
Если убавить ток в диодах, уменьшится рассеиваемая мощность и реальная рабочая температура, тогда есть шанс что и старые ещё поработают.

Способы ограничить ток в LED-драйверах подсветки

На просторах интернета много информации о способах ограничения тока в светодиодах подсветки для разных телевизоров и LED драйверов. Многое написано правдоподобно, но иногда пишут люди, далёкие от электроники, в целях публикации любого популярного контента на злободневные темы для поднятия рейтинга сайтов.

В рамках одной статьи невозможно рассказать о каждом случае отдельно, ведь даже в одинаковых моделях могут быть установлены разные панели и разные платы со своими вариантами драйвера. Но есть основные принципы, которые понятны мастерам даже с минимальными знаниями и навыками.

Существуют три основных способа уменьшить ток подсветки.

1. Увеличением сопротивления датчика тока светодиодов – низкоомных измерительных резисторов в цепи катодов (LED-).
2. Увеличением номиналов резисторов на входе ISET (установка тока) микросхемы LED драйвера.
3. Изменением номиналов резисторов в делителе на управляющем входе ADIM (Dimming – яркость свечения).

Принципиальное отличие входа ISET от ADIM в том, что ISET – вход инвертирующий, как и FB, а ADIM – прямой.

Рассмотрим эти варианты более подробно.

Step-Up Led Drivers

Первый способ наиболее прост и популярен, применяется в упрощённых драйверах, которые обычно не имеют входа ISET, а регулировка и стабилизация тока осуществляется по общему принципу ШИМ-модуляции посредством Отрицательной Обратной Связи (ООС), например OB3350CP, OB3353CP, SN51DP, BIT3267. Такие микросхемы часто выполнены в планарных корпусах 8 pin.
По сути это типовая схемотехника обратноходового повышающего (Step-Up) преобразователя со стабилизацией тока в нагрузке. Напряжение с датчика тока в этом случае подаётся на инвертирующий вход FB микросхемы ШИМ (FlyBack – обратная связь). У BIT3267 этот вывод обозначен INN.
Контакты разъёма LED- от светодиодных планок могут быть соединены с токовым датчиком непосредственно (Рисунок 1), либо через ключи MosFet, выполняющие функцию On/Off, тогда датчик тока включен в исток ключа (Рисунок 2).

OB3350CPOB3350CP

В качестве датчика тока обычно используются низкоомные резисторы, один или несколько, соединённые параллельно. Чаще их номиналы находятся в пределах 1 – 4.7 ом. Достаточно бывает изменить номиналы, либо просто убрать один или два резистора из общей сборки, тогда сопротивление датчика возрастёт, пропорционально увеличится напряжение на нём и на входе FB, а ШИМ по ООС отработает в сторону уменьшения тока. Зависимость обратно-пропорциональная, если удвоить общее сопротивление датчика, ток уменьшится вдвое.

Для расчёта общего сопротивления при параллельном соединении резисторов можно воспользоваться нашим калькулятором, чтобы составить необходимую пропорцию для установки желаемого тока. Посчитать устно даже два номинала бывает затруднительно, ведь складывается проводимости — величины, обратно-пропорциональные сопротивлениям.

Читайте так же:
Протокол измерений постоянным током смонтированных парных кабелей 1

Второй способ (Рисунок 3) применяется обычно в многоканальных вариантах, где используются ШИМ-регуляторы со входом ISET для установки тока, например, MP3398A, MP3394S, OB3368AP.
Часто в цепи ISET есть набор из двух резисторов, соединённых последовательно или параллельно, можно заменить один из двух. Зависимость между напряжением на входе ISET, сопротивлением Rset и током в подсветке указана в документации на микросхему драйвера (Datasheet от производителя).
В большинстве случаев, общее сопротивление между выводом ISET и корпусом обратно пропорционально току. Увеличивая сопротивление вдвое, ток уменьшим примерно вдвое.

MP3398AMAP3511

Step-Down Led Drivers

В третьем способе (Рисунок 4), когда есть вход для оперативной регулировки тока на входе DIM, ADIM (Dimming Adjust), сопротивление по входу ADIM на корпус рассчитывается, исходя из того, что ток подсветки определится напряжением на управляемом входе ADIM микросхемы драйвера, которое обычно в прямой пропорции с током. Тогда, чтобы уменьшить напряжение на входе, сопротивление Rset относительно корпуса надо уменьшать, как нижнее плечо в делителе, тогда и ток уменьшится. Это прямой вход ОУ, в отличие от инвертирующих FB, INN, ISET в рассмотренных ранее способах. Необходимо учитывать и цепи оперативной регулировки подсветки процессором из меню, если эта функция (Dimming) используются в конкретной модели телевизора, будьте внимательны.

В подобной схемотехнике силовой части понижающего (Step-Down) драйвера, как на рисунке 4, можно использовать вариант с увеличением сопротивления датчика тока Rcs, ведь ток в периоде через светодиоды и токовый датчик здесь идёт во время прямого хода, когда транзистор открыт. По сути это прямоходовый преобразователь, а индукционный ток дросселя завершается во время обратного хода и он не учитывается в датчике, но пропорциональность будет соблюдаться. Поэтому уменьшить ток подсветки здесь можно просто, увеличив сопротивление токового датчика в истоке основного рабочего ключа.
То есть, ток подсветки будет прямо пропорционален как напряжению на входе ADIM, так и напряжению на датчике Rcs.
Для MAP3511 здесь ток рассчитывается по формуле I = 0.5Vdim/Rsc.
Не следует путать его с резистором Rcs в обратноходовых Step-Up драйверах в истоке рабочего ключа. Там датчик тока светодиодов в истоке ключа On/Off, и таких схем большинство. Это очень важно, будьте внимательны!
Понижающие преобразователи такого типа используется в Led-драйверах современных телевизоров Samsung и LG с микросхемами MAP3511 (analog 7014X), MAP3512, MAP3516, LC5901, LC5910, BD94062F, SM1251, SLC7015R.

Ограничение тока для большинства моделей мы планируем публиковать непосредственно на ремонтных страницах этих моделей, а здесь можно рассмотреть лишь принципы и отдельные сложные и спорные случаи организации работы драйвера и цепей управления подсветкой.

BD94062F Led Driver

Рассмотрим отдельно ограничение тока с понижающим драйвером BD94062F, который встречается в блоках питания SAMSUNG BN44-00947A, BN44-00947G.
Типовая схема включения BD94062F представлена на рисунке ниже:

BD94062F

На рисунке видно, что ток от питания Vin в прямом ходе идёт через светодиоды, дроссель, открытый ключ и резистор в его истоке Rset. Линейно нарастая от нуля в индуктивности, он будет всякий раз в периоде ограничиваться напряжением на резисторе Rset, которое будет закрывать ключ компаратором внутри микросхемы ШИМ. На втором входе компаратора — напряжение, пропорциональное ADIM.
Ток подсветки определится соотношением Iled = 0.35Vadim / Rset.
Документ на BD94062F прилагается.
Тогда, чтобы уменьшить ток подсветки, можно просто пропорционально увеличить номинал измерительного резистора Rset.
В блоках питания BN44-00947A и BN44-00947G это резистор R9873 1 Ohm. Можно выпаять один конец и впаять последовательно с ним 0.33 Ohm. Ток уменьшится на 33%.

Ещё раз напомним, уменьшать ток резисторами в истоке рабочего ключа преобразователя можно только в понижающих прямоходовых драйверах. В такой схемотехнике ключ преобразователя выполняет и функцию ON/OFF. А в большинстве повышающих обратноходовых драйверах ключ ON/OFF с датчиком тока отдельный, либо его вовсе нет, тогда токовый датчик для светодиодной линейки подключен непосредственно к контакту разъёма LED-.

Читайте так же:
Почему выключатель не выключает свет

SLC1012C Led Driver

В некоторых вариантах драйвера ключ ON/OFF находится внутри самой микросхемы, например SLC1012C (analog FAN7340) в блоках питания BN44-00493B, BN44-00604B, либо SLC2012M в блоках BN44-00501A, BN44-00496A. и другие похожие.
В таких случаях контакт LED- разъёма светодиодных планок соединён с выводом DRAIN (сток) ключа ON/OFF микросхемы, а низкоомный резистор (датчик тока) подключен к истоку (SOURCE) ключа — выводу SENSE микросхемы FAN7340 на рисунке ниже.

SLC1012CSLC2013M

У микросхем SLC1012C и SLC2012M измерительные резисторы датчика подключены к выводу 8 SENSE. Есть двухканальные микросхемы SLC2013M с подключением двух датчиков к выводам 1 SOU1 и 14 SOU2, а катоды светодиодных планок к выводам 28 DRN1 и 15 DRN2 соответственно.

OB3363 Led Driver

Часто возникают вопросы по микросхеме OB3363QP. Во-первых, не следует её путать, с OB3363VP, которая немного отличается корпусом и распиновкой выводов, в частности, вход ISET у OB3363QP – вывод 5. А у OB3363VP – вывод 6.
Далее. В некоторых Mainboard установлена микросхема с маркировкой OB3363QP, но вообще не соответствует по выводам ни той, ни другой.
Например, в платах MS308C1-ZC01-01, MSA6285-ZC01-01, MS0V591-ZC01-01 иногда встречаются микросхемы драйвера, маркированные как OB3363QP, но не следует здесь верить маркировке, по схеме и по факту там должна быть установлена AP3064. Можно определиться общему (GND) выводу и по реальному выводу ISET – он будет на выводе 2, как и положено для AP3064.

BN44-00622B Power Supply

В блоках питания BN44-00622B тоже есть спорные варианты ограничения тока. Четыре больших резистора на 2.2 Ohm – датчики тока каждого из четырёх каналов сменить можно, но нерационально. Есть более простой способ – потенциометром VR9001. Если недостаточно штатного минимального значения, можно изменить диапазон регулировки.
В нижнем по схеме положении ползунка ток минимален, согласно рисунку ниже, когда регулятор выкручен до конца против часовой стрелки.
Большинство вариантов реализации этого метода в интернете выглядят несколько сомнительными, хотя тут видно простое решение – уменьшить общее сопротивление в верхнем плече делителя (резисторы R9009, R9010, R9011) у всех номиналы 2.4 kOhm. Достаточно параллельно им припаять ещё резистор, например, 1.5 kOhm, можно сверху к любому из них. На рисунке ниже эти резисторы обведены красной линией. На плате они стоят несколько поодаль, легко найти их по проводникам и позиционным обозначениям.

BN44-00622B DIMMINGEDIT DIMMING

OZ9902 LED-Driver

Следует так же обратить внимание на ШИМ регулятор OZ9902 со всеми его модификациями, он может быть выполнен в корпусах:
SOP24 — OZ9902, OZ9902A, OZ9902GN, OZ9902AGN, OZ9902ASN.
SOP16 — OZ9902B, OZ9902C, OZ9902D, OZ9902CGN, OZ9902DGN.
Уменьшать ток подсветки целесообразно номиналами измерительных резисторов Rset в истоках ключей ON/OFF, с которых сигнал поступает на входы ISEN (согласно рисунку для OZ9902B).
В вариантах SOP24 уменьшать номиналы токовых датчиков одновременно и одинаково в обоих каналах (входы 13 ISEN2 и 17 ISEN1 микросхемы).
Найти ключи на плате обычно легко по проводникам от контактов разъёма подсветки LED-. На картинке OZ9902 здесь один канал нарисован не полностью, но в реальности их два одинаковых, если используется микросхема в корпусе SOP24.
Обычно датчики Rset состоят из нескольких низкоомных резисторов, соединённых параллельно.

OZ9902 24pinOZ9902 16pin

BD9472EFV LED-Driver, T-CON 6870S-1619B LC216EXN_SFA1

В LED-драйверах с микросхемой BD9472EFV на планке T-CON можно увеличить общее сопротивление резисторов от вывода 23 (ISET) BD9472EFV на корпус. Точная пропорциональная зависимость может не соблюдаться, подбирать номиналы следует опытным путём.
Рисунок составлен вручную визуально с планки T-CON, документации на BD9472EFV в интернете не нашлось.
Для панели LC216EXN(SF)(A1) и планки подсветки 6916L-1237A ток изначально был 70 mA в каждом из двух каналов в максимуме (несколько секунд после включения без сигнала).
После увеличения одного из резисторов с 91 kOhm до 160 kOhm, ток уменьшился до 50 mA.
Диоды типоразмера 7020, сдвоенные, но переходы соединены внутри параллельно, следовательно — трёхвольтовые.
Всего на планке 28 светодиодов — два канала по 14.

Читайте так же:
Отношение тока сечения кабеля

BD9472EFV

OCP8128 LED-Driver, PSU TV5502-ZC02-01

В блоке питания TV5502-ZC02-01 используется микросхема OCP8128, которая имеет возможность использовать шесть отдельных преобразователей, но используются обычно лишь два. Преобразователи прямоходовые, понижающие, с датчиками тока в истоке рабочих ключей, принцип работы которых вкратце мы уже рассматривали выше.
Здесь так же для ограничения тока можно пропорционально увеличить сопротивление токовых датчиков в обоих каналах одинаково. В блоке TV5502-ZC02-01 эти резисторы R315, R307 и R304, R314 в истоках ключей.

Документ PDF OCP8128 и схема TV5502-ZC02-01 прилагаются.

Схема включения OCP8128 из документации от производителя приведена на рисунке ниже. Датчики тока на картинке R9 и R14.
В интернете упорно распространяются слухи, что необходимо ещё изменять номиналы резисторов ко входам IFB, на картинке это R15 и R20. Не торопитесь этому верить, теоретически это необоснованно и в практике не описано.

OCP8128

Другие популярные, сложные и спорные случаи ограничения тока будут публиковаться по мере поступления информации.

Календарь

ГК Navigator приняла решение о модернизации и переходе производства всех светильников промышленной группы на технологию LCT в течение ближайших двух лет.

Представляем вам новые и модернизированные модели светильников Navigator, разработанных по технологии LCT, которая повышает энергоэффективность и срок службы светодиодов, а также позволяет минимизировать падение светового потока в течение срока службы.

  • DSP-CC-R Эффективность повышена до 130 лм/Вт
  • NSF – PW5 Эффективность повышена до 120 лм/Вт
  • NFL-M1 Эффективность до 130 лм/Вт
  • NSF-PW6 Эффективность до 105 лм/Вт
  • NLP-OS2/MS2/IS2/PS2 Эффективность повышена до 117 лм/Вт
  • DSP-AC-40 Эффективность повыше на до 125 Лм/Вт.
  • NHB-P7 Эффективность до 150 лм/Вт
  • DSP-02 Эффективность до 130 лм/Вт
  • NSF-PW7 Эффективность до 160 лм/Вт
  • DPO-02 Эффективность до 120 лм/Вт

LCT (low current tech.) – технология подачи тока, питающего светодиоды, существенно ниже номинального значения. В чем ее суть и какие преимущества она обеспечивает?


Суть LCT примерно такая же: потенциал мощности светодиодов, установленных в светильниках, используется не в полной мере. То есть на светодиод номиналом, например, 0,5 Вт, подается 0,2 Вт. Это оригинальное решение позволяет снизить деградацию кристалла светодиода в целом, а также приостановить старение люминофора, наносимого на кристалл, и, следовательно, изменение оттенка свечения светодиода на более холодный, синий. Светильники с технологией LCT успешно выдерживают тест по международной стандартизованной методике «LM-80», поскольку сохраняют порядка 70% своего изначального светового потока по истечении заявленного срока службы

Кроме того, при снижении питающего тока световой поток светодиода снижается нелинейно (с меньшей скоростью), а, значит, эффективность светового прибора возрастает.

Если говорить об экономической составляющей, то выгоды приобретения светильников с технологией LCT совершенно очевидны:

  • для достижения необходимого уровня освещенности требуется меньшее количество светильников,
  • существенное снижение затрат на электроэнергию,
  • возможность реже менять светильники, поскольку срок их службы выше.

Ввиду всех вышеописанных преимуществ и очевидной выгоды для потребителя, ГК Navigator приняла решение о модернизации и переходе производства всех светильников промышленной группы на технологию LCT в течение ближайших двух лет.

Как решить проблему снижения яркости свечения светодиодных модулей

Как решить проблему снижения яркости свечения светодиодных модулей

Все, кто делают светодиодные вывески, когда-либо сталкивались с тем, что их рекламная конструкция светит не так ярко, как должна по расчетам. Например, две абсолютно одинаковые вывески могут иметь разную яркость на одном объекте. Давайте разберемся, в чем может быть заключена проблема и как ее избежать.

В этой статье мы не будем останавливаться на вопросе выбора самих светодиодов и их раскладки, а остановимся на других параметрах, которые в равной степени могут влиять на любые источники света.

Итак, из-за чего же может происходить снижение яркости свечения?

Если коротко, то единственная причина – это снижение напряжения и, как следствие, тока, проходящего через светодиод. Причем, при снижении питающего напряжения всего на 1% (11,9 В вместо 12В), яркость светодиода уменьшается на целых 6%!

График.jpg

Основные причины потери напряжения

1. Слишком большое расстояние от блока питания до источника света.

Читайте так же:
Номинальный ток для кабеля 25мм2

Потери в проводах — это один из самых значимых факторов. При проектировании вывески важно размещать блок питания максимально близко к светотехнике. Это базовое правило. Однако, бывают ситуации, когда это неудобно, в этом случае надо правильно подобрать увеличенное сечение провода, либо использовать блок питания с регулируемым напряжением на выходе. Это позволяет выдавать не 12 В, а, например, 14 В.

2. Неправильно подобранное сечение проводов

Чем дальше расстояние и выше мощность нагрузки, тем большее сечение нам необходимо использовать. Потери напряжения в проводе рассчитываются по формуле:

formula1.jpg

где p – (0,017) удельное сопротивление меди, S – фактическое сечение провода, L – длина, I – сила тока.

В вывесках мы имеем дело весьма с большими токами. Так при нагрузке всего 150 Вт, максимальный ток может достигать 12 А. Обратите внимание, что значение расстояния от блока питания до нагрузки удваивается, так как постоянный ток проходит путь туда и обратно. Потери напряжения на каждый метр расстояния в зависимости от диаметра провода можно посмотреть в соответствующих справочных таблицах.

Также на потери напряжения может влиять температура, которая зависит от времени года и разогрева проводов из-за условий их размещения. Формула для расчета потерь напряжения в зависимости от температуры:

formula2.jpg

где а – (0,004) температурный коэффициент удельного сопротивления для меди, Т2 — температура фактическая, Т1 – температура начальная (20 градусов по Цельсию)

Влияние температуры весьма значительно, например, при прокладке кабелей в гофротрубе, на которую падают прямые лучи солнца, температура провода вполне может достигнуть 60 градусов по Цельсию. В таком случае падение напряжения вырастет дополнительно почти на 20%.

Также не маловажно помнить, что реальное сечение и как следствие сопротивление провода, который вы используете может отличаться от того, что у него написано на этикетке. Эта разница порой достигает 10-20%.

С учетом этих факторов рекомендуется при расчете сечения учитывать дополнительный коэффициент 1,3. Это позволит полностью застраховаться от всех возможных ситуаций в будущем.

3. Слишком большое количество модулей в последовательной цепи

При коммутации важно соблюдать рекомендации по длине цепочки, указанные в паспорте к модулям. Важно понимать, что яркость свечения в цепочке снижается по мере удаления от блока питания. И последний модуль в цепи будет светить на 6-15% менее ярко. Для снижения этих потерь можно закольцовывать модули, что повышает ток в цепи в целом и повышает световой поток у всех модулей.

Линейное подключение.jpg

Кольцевое подключение.jpg

4. Ваш блок питания изначально не выдает заявленные 12 В

Это очень просто проверить, замерьте напряжение на выходе блока питания после подключения нагрузки. Если вы получили значение 11.7-11.9 В или меньше, то это значит, что рассчитывать на максимальную яркость свечения не приходится. Она будет изначально ниже. Причем снижение напряжения питания всего 0,1В приводит к понижению яркости модулей на 6%, при снижении на 0,2 В – на 12%, а на 0,3 В – на 18%. См. график. Важно проводить данные измерения под нагрузкой. Это позволяет наиболее точно измерить потери, так как под нагрузкой напряжение «проседает». В большинстве блоков питания изначально закладывается «запас», чтобы под нагрузкой стабилизировать напряжение 12 В.

Каждый из этих пунктов сам по себе может снизить яркость на 10-15%. Казалось бы, на это можно закрыть глаза, но есть одно «Но…», зачастую эти факторы совмещаются в одной вывеске. В этом случае из-за таких простых ошибок коммутации вы теряете более 20-40% яркости. Фактически при соблюдении правил можно было бы сразу поставить не такие яркие модули, либо использовать меньше по количеству, чтобы гарантированно сократить затраты на подсветку на 30% изначально.

Тест модулей.jpg

Приведем общие рекомендации для решения проблемы пониженной яркости в вывеске.

1. Проверить количество модулей в последовательной цепи на соответствие рекомендациям

2. Измеряем напряжение на выходе блока питания, если оно меньше 12 В, то можно заменить блок питания

Читайте так же:
Нет выключателя как зажечь свет

3. Измеряем напряжение на первом светодиодном модуле в цепи и сравниваем со значением на выходе блока питания. При большой разнице следует заменить провод на большее сечение.

Почему мигает светодиодная лампа

Написать эту небольшую заметку я решил потому, что на просторах интернета не нашел похожих решений. Решение опробовано на практике, но для подсветки, где применяется светодиод. Чаще всего, в выключателях для подсветки применяют неоновые лампы. Но в последнее время все больше используются светодиоды. Типовая схема подсветки в выключателе выглядит так:

почему мигает светодиодная лампа

Диоды VD1, VD2 и резистор R1 находятся внутри выключателя. Диод пропускает ток только в одном направлении. В квартирах ток имеет переменное направление и через светодиод протекает только половина периода тока, другая половина грузит его в обратной полярности. Для диодов величина приложенного к ним напряжения обратной полярности ограничена. Для светодиодов значение этого напряжения составляет единицы вольт. Поэтому для включения светодиода в сеть 220 В его нужно обезопасить от большой величины обратного напряжения. В схемах подсветки последовательно со светодиодом включается обычный диод, у которого величина обратного напряжения составляет не менее 400 В. Все опасное для светодиода напряжение падает на этом диоде. Резистор нужен для ограничения тока, протекающего через светодиод.

Схема включения светодиодной лампы и выключателя со светодиодной подсветкой:

почему мигает светодиодная лампа

Драйвер, показанный на рисунке, обычно расположен в корпусе лампы (в цоколе). Он нужен для стабилизации тока, питающего светодиод (или светодиоды) лампы.

Как работает подсветка?

Когда выключатель разомкнут, ток течет от фазы по цепи светодиода через нагрузку (драйвер светодиода). При замыкании выключателя он шунтирует цепь подсветки – светодиод не светится. Весь ток идёт через замкнутые контакты выключателя.

Почему лампа при разомкнутом выключателе мигает? Выключатель разомкнут, ток течет по цепи подсветки через драйвер. И этого тока хватает, чтобы в драйвере лампы входные ёмкости зарядились до величины минимального напряжения, при котором он способен работать. Поэтому драйвер выдает в лампу ток, которого хватает для свечения светодиодов. Лампа вспыхивает, от этого емкости разряжаются, и лампа снова гаснет, затем процесс повторяется. Для светодиодных ламп 220 В мощностью до 5 Вт очень распространен драйвер BP3122.

Способы решения проблемы.

Самый простой способ решения – исключить из цепи подсветку. Разобрать выключатель и удалить из него подсветку.

Еще один вариант – это параллельное подключение к каждой лампе конденсатора или резистора. Недостаток данного решения в том, что конденсатор или резистор нужно включать параллельно каждой лампе. Резистор должен иметь мощность не менее 0.5 Вт, да и конденсатор на 400-600 В не совсем маленький.

И третий вариант – уменьшение тока в цепи светодиода подсветки с помощью резистора. Если в цепь подсветки последовательно включить сопротивление, ток в цепи создаст падение напряжения на этом сопротивлении, тогда входные емкости не смогут зарядиться до напряжения, необходимого для включения драйвера. Конечно, при этом уменьшится и ток в цепи подсветки, и светодиод будет светить тусклее, но это практически незаметно. Зато ток в цепи подсветки течет небольшой, поэтому можно поставить резистор меньшего размера (0.25 Вт). И не нужно подключать резистор к каждой лампе.

Можно подобрать величину дополнительного сопротивления путем включения подстроечного резистора и увеличивать сопротивление, пока лампа не перестанет мигать. Например, взять резистор сопротивлением 1 МОм, припаять к нему провода и включить в разрыв цепи подсветки. При увеличении сопротивления лампа сначала станет мигать реже затем перестанет вообще.

Внимание! При подборе резистора будьте осторожны, т.к. выключатель включен в цепь опасного для жизни напряжения 220 В! Снятие и установку выключателя следует проводить при отключенной сети!

В моем случае лампа переставала мигать при сопротивлении около 180 кОм. Значит нужно взять небольшой запас и выбрать ближайший резистор из стандартного ряда, например 220 кОм. Измененная схема подсветки выглядит так:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector