Artellie.ru

Дизайн интерьеров
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

11. 1 Расчет релейной защиты автоматических выключателей трансформаторных подстанций напряжением 10/0,4 кВ

11.1 Расчет релейной защиты автоматических выключателей трансформаторных подстанций напряжением 10/0,4 кВ

Вводные Q1, Q3, Q4, Q6 и секционные Q2, Q5 (см. рисунок 11.1) автоматические выключатели должны иметь три ступени защиты:

— защиту от перегруза;

— селективную токовую отсечку (с выдержкой времени);

— мгновенную токовую отсечку (без выдержки времени).

Вводные автоматические выключатели по номинальному току выбираются в зависимости от номинальной мощности Sт.н силовых трансформаторов, их числа и загрузки в нормальном и послеаварийном режимах, т.е. параметры трансформаторов и вводных выключателей строго согласуются. Для двухтрансформаторной подстанции, питающей электроприемники 2-й категории надежности, коэффициент загрузки в послеаварийном режиме Кз.п = 1,4, т.е. номинальный ток выключателя должен быть не менее 140 % номинального тока трансформатора на стороне низшего напряжения.

Номинальный ток трансформатора на стороне НН:

. (11.1)

Для трансформаторов ТМЗ-400:

Следовательно, номинальный ток вводного автоматического выключателя:

Номинальный ток секционных выключателей выбирается 50 % номинального тока вводных выключателей, что соответствует симметричной загрузке секций сборных шин напряжением 0,4 кВ ТП.

Iв.с.н = 0,5 ∙ Iв.с.н ≥ 0,5 ∙ 809 = 405 А

Выбираем автоматические выключатели для трансформаторов ТМЗ-400[8]:

— вводной выключатель Compact NS800b с номинальным током = 800 А;

— секционный выключатель Compact NS630b с = 400А;

Для управления выключателем и защиты электрической сети выберем блок контроля и управления Micrologic 5.0 A [9], осуществляющий три вида токовых защит:

— защиту от перегрузок;

— селективную токовую отсечку;

— мгновенную токовую отсечку.

Стилизованная и типовая время-токовые защитные характеристики блока Micrologic 5.0 A приведены на рисунке 11.2

Рисунок 11.2 – Характеристики блока Micrologic 5.0 A

11.1.2 Расчет уставок (расчет параметров блока Micrologic 5.0 a)

Учитывая, что расчет необходимо проводить снизу вверх, рассмотрим защитные характеристики секционных выключателей, на примере Q5 (ТМЗ-400).

1. Защита от перегрузок.

Максимальный рабочий ток секционного выключателя составляет Iв.с.н = 405А. Уставка защиты от перегрузок Ir может задаваться в пределах (0,4-1,0)∙In и регулируется с помощью переключателя Ir (см. рисунок 11.3).

.

Принимаем уставку защиты от перегрузок Ir = 1,0∙In = 1,0∙400 = 400А, что соответствует 9-му положению переключателя Ir (рисунок 11.3).

Условные токи несрабатывания защиты от перегрузок:

Ближайшая уставка по времени, обеспечивающая селективность защит секционного выключателя с выключателем отходящей линии во всем диапазоне токов перегрузки, получается равной tr = 8 с при токе 6∙Ir = 2400 А (5-е положение переключателя tr, рисунок 11.3). При выборе величины уставки по времени было учтено, что аналогичная уставка у нижестоящего выключателя принята 6 с.

Рисунок 11.3 – Фрагмент передней панели Micrologic 5.0 A

Разброс времени срабатывания защиты от перегрузок при:

токе 1,5∙Ir = 600 А составит 140-200 с;

токе 6∙Ir = 2400 А – 6,4-8,0 с;

токе 7,2∙Ir = 2880 А – 4,4-5,5 с.

2. Селективная токовая отсечка.

Выбор уставки срабатывания тока отсечки Isd и времени tsd необходимо производить также с учетом защитных характеристик нижестоящих выключателей. Уставка по току может регулироваться в пределах Isd = (1,5-10)∙Ir, а время срабатывания tsd =0-0,4 со ступенькой Δtsd = 0,1 с, примем уставку по току Isd = 2∙Ir = 2∙400 = 800 А, время tsd = 0,2 с зоне I2t On.

Уставки на блоке Micrologic 5.0 A выполняются с помощью переключателей 3 соответственно по току Isd 2-е положение, а по времени tsd — 2-е положение в секторе On (см. рисунок 11.4).

Рисунок 11.4 – Переключатели уставок селективной токовой отсечки

(3) и мгновенной токовой отсечки (4)

Границы зоны срабатывания этой защиты меняются:

— по току в пределах ±10 % или (0,9-1,1)Isd:

0,9 ∙ 800 = 720 А и 1,1 ∙ 800 = 880 А;

— по времени tsd = 0,14-0,2 с [9]

3. Мгновенная токовая отсечка.

Имеет регулируемую уставку по току, связанную с номинальным током выключателя Ii = (2-15) ∙In или может быть выведена из работы (см 9-е положение переключателя Ii). Примем 6-ти кратную уставку (4-е положение переключателя Ii), т.е. Ii = 6∙400 = 2400 А. Погрешность срабатывания отсечки составляет ±10 % или ΔIi =2160-2640 А.

Рассмотрим защитные характеристики вводного выключателя Q4 (Q6)

1. Защита от перегрузок.

Максимальный рабочий ток вводного выключателя равен Iв.в.н = 809А. Уставка защиты от перегрузок Ir может задаваться в пределах (0,4-1,0)∙In и регулируется с помощью переключателя Ir (см. рисунок 11.3).

Читайте так же:
Шторка для автоматического выключателя

.

Принимаем уставку защиты от перегрузок Ir = 1,0∙In = 1,0 ∙800 = 800А, что соответствует 9-му положению переключателя Ir (см. рисунок 11.3).

Условные токи несрабатывания защиты от перегрузок Ind =1,05∙Ir = =1,05∙800 = 840 А и срабатывания – Ind = 1,20∙Ir = 1,20∙800 = 960 А.

Уставку по времени вводного выключателя примем равной уставке секционным выключателем tr = 8 с при токе 6∙Ir = 4800 А (5-е положение переключателя tr, см. рисунок 11.3).

Разброс времени срабатывания защиты от перегрузок при:

токе 1,5∙Ir = 1200 А составит 140-200 с;

токе 6∙Ir = 4800 А – 6,4-8,0 с;

токе 7,2∙Ir = 5760 А – 4,4-5,5 с.

2. Селективная токовая отсечка.

Выбор уставки срабатывания тока отсечки Isd и времени tsd необходимо производить также с учетом защитных характеристик нижестоящего секционного выключателя. Уставка по току может регулироваться в пределах Isd = (1,5-10)∙Ir, а время срабатывания tsd =0-0,4 со ступенькой Δtsd = 0,1 с. После проведенного анализа примем Isd = 2∙Ir = 2∙800= 1600 А, время tsd = 0,3 с зоне I2t On. Уставки на блоке Micrologic 5.0 A выполняются с помощью переключателей 3 соответственно по току Isd 2-е положение, а по времени tsd — 3-е положение по часовой стрелке в секторе On (см. рисунок 11.4).

Границы зоны срабатывания этой защиты меняются:

— по току в пределах ±10 % или (0,9-1,1)Isd:

0,9 ∙ 1600 = 1440 А и 1,1 ∙ 1600 = 880 А;

— по времени tsd = 0,23-0,32 с [9]

3. Мгновенная токовая отсечка.

Имеет регулируемую уставку по току, связанную с номинальным током выключателя Ii = (2-15) ∙In или может быть выведена из работы (см 9-е положение переключателя Ii).

Примем 6-ти кратную уставку (4-е положение переключателя Ii), т.е. Ii = 6∙800 = 4800 А. Погрешность срабатывания отсечки составляет ±10 % или ΔIi =4320-5280 А.

Нормативная документация по расчетам уставок автомат.выключателей?

Подскажите, пожалуйста, в какой нормативной документации есть требования к чувствительности автоматических выключателей в основной зоне и в зоне резервирования (Кч = ?)?

2 Ответ от CLON 2011-05-10 09:46:59

  • CLON
  • Модератор
  • Неактивен
  • Зарегистрирован: 2011-01-11
  • Сообщений: 699
  • Репутация : [ 0 | 0 ]
Re: Нормативная документация по расчетам уставок автомат.выключателей?

Какое-то странное чувство. У выключателей нет чувствительности, а есть отключающая способность.
Чувствительность есть у уставок срабатывания релейной защиты (автоматов или предохранителей).
В основной зоне в зависимости от типа присоединения, от кч=2.0 (Тр) до 1.5. 1.3 (Линии), у резервных зон (ступеней) защит кч=1.2.

3 Ответ от E.A.BUCHINSKIY 2011-05-10 10:23:14

  • E.A.BUCHINSKIY
  • Пользователь
  • Неактивен
  • Откуда: Иркутск
  • Зарегистрирован: 2011-05-25
  • Сообщений: 358
  • Репутация : [ 0 | 0 ]
Re: Нормативная документация по расчетам уставок автомат.выключателей?

Отключающая способность-то это понятно. Я и имел ввиду расчет уставок для автоматических выключателей c регулируемыми параметрами, например, с электронным расцепителем (к примеру Tmax ABB). Расчет селективности выполнен в программе. Получен результат, что Кч к минимальному однофазному току КЗ в основной зоне защиты равен 1,142. Вопрос — удовлетворяет ли такой Кч требованиям нормативных документов? Если нет то каких именно? Программа не выдает предупреждений о недостаточной чувствительности. Если брать Кч для обычной МТЗ, то в основной зоне должен быть 1,5, в зоне резервирования 1,2, но ведь это может не распространяться на сети 0,4 кВ?
А из какого нормативного документа Вы приводите свои значения?

4 Ответ от CLON 2011-05-10 12:19:34

  • CLON
  • Модератор
  • Неактивен
  • Зарегистрирован: 2011-01-11
  • Сообщений: 699
  • Репутация : [ 0 | 0 ]
Re: Нормативная документация по расчетам уставок автомат.выключателей?

ПУЭ — там должно быть (надеюсь).

5 Ответ от evdbor 2011-05-10 12:57:59

  • evdbor
  • Модератор
  • На форуме
  • Зарегистрирован: 2011-01-07
  • Сообщений: 1,756
  • Репутация : [ 0 | 0 ]
Re: Нормативная документация по расчетам уставок автомат.выключателей?

ПУЭ нормируется время отключения. Величина ТКЗ должна быть больше порога срабатывания расцепителя АВ с учетом разброса его характеристик.
ПУЭ 7 издание.
1.7.79. В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл. 1.7.1.
Таблица 1.7.1
Наибольшее допустимое время защитного автоматического отключения для системы TN
Номинальное фазное напряжение Uo, В Время отключения, с
127 0,8
220 0,4
380 0,2
Более 380 0,1
Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.
В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.
Допускаются значения времени отключения более указанных в табл. 1.7.1, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов или щитков при выполнении одного из следующих условий:
1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:
50 Zц/Uо,
где Zц — полное сопротивление цепи «фаза-нуль», Ом;
U0 — номинальное фазное напряжение цепи, В;
50 — падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;
2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.
Допускается применение УЗО, реагирующих на дифференциальный ток.

Читайте так же:
Расшифровка характеристик автоматических выключателей

В 6 издании ПУЭ говорилось о кратности тока КЗ относительно уставки.
То же п. 1.7.79. Недействующая редакция.
[spoiler]1.7.79. В электроустановках до 1 кВ с глухозаземленной нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой защитный проводник возникал ток КЗ, превышающий не менее чем:
в 3 раза номинальный ток плавкого элемента ближайшего предохранителя;
в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику.
При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (отсечку), проводимость указанных проводников должна обеспечивать ток не ниже уставки тока мгновенного срабатывания, умноженной на коэффициент, учитывающий разброс (по заводским данным), и на коэффициент запаса 1,1. При отсутствии заводских данных для автоматических выключателей с номинальным током до 100 А кратность тока КЗ относительно уставки следует принимать не менее 1,4, а для автоматических выключателей с номинальным током более 100 А — не менее 1,25.
Полная проводимость нулевого защитного проводника во всех случаях должна быть не менее 50 % проводимости фазного проводника.
Если требования настоящего параграфа не удовлетворяются в отношении значения тока замыкания на корпус или на нулевой защитный проводник, то отключение при этих замыканиях должно обеспечиваться при помощи специальных защит.[/spoiler]

6 Ответ от E.A.BUCHINSKIY 2011-05-11 04:26:06

  • E.A.BUCHINSKIY
  • Пользователь
  • Неактивен
  • Откуда: Иркутск
  • Зарегистрирован: 2011-05-25
  • Сообщений: 358
  • Репутация : [ 0 | 0 ]
Re: Нормативная документация по расчетам уставок автомат.выключателей?

ПУЭ нормируется время отключения.

Да, действительно, время 0,4с для 220В.

Величина ТКЗ должна быть больше порога срабатывания расцепителя АВ с учетом разброса его характеристик

а если в расчете самого тока КЗ есть погрешность и реальный ток КЗ ниже расчетного, то получается не будет обеспечиваться надежного срабатывания отсечки?

есть еще такой пункт в ПУЭ:

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.
Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.
Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

Как было ранее указано в пункте 1.7.79 не содержится никакой кратности, а там таблица с допустимыми временами отключения. Пункт 7.3.139 говорит нам:

7.3.139. В электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка проводимость нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику.
При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (без выдержки времени), следует руководствоваться требованиями, касающимися кратности тока КЗ и приведенными в 1.7.79.

Четкого ответа на свой вопрос и в этом пункте я не увидел. Жестко прописано только одно, обеспечьте время не более указанного. Указанная минимальная кратность 6хIном не говорит ни о чем, да и для характеристик С, D, K при кратности 6 устройство сработает секунд за 20 только.

Читайте так же:
Убрать выключатель с удлинителями

Проектируем электрику вместе

Выбор автоматических выключателей должен вестись, исходя из параметров проводов и кабелей, по условиям защиты от перегрузок, по режиму короткого замыкания, по селективности, по типу время-токовой характеристики. Время отключения теплового расцепителя.. Предельная отключающая способность автоматического выключателя.. Координация аппаратов защиты.. Таблица селективности.. Номинальный ток автоматического выключателя..

Выбору автоматов должен предшествовать расчет электрических нагрузок и выбор сечений проводников.
Еще раз подчеркну, что автоматические выключатели защищают линии электрических сетей (провода и кабели) от перегрузок и сверхтоков коротких замыканий. Поэтому расчет и выбор автоматических выключателей в первую очередь должен вестись, исходя из параметров проводов и кабелей (тип изоляции, материал и сечение токопроводящей жилы, количество жил). Точнее говоря — из предельно допустимой токовой нагрузки проводника.
Кроме того, аппарат защиты должен соответствовать еще ряду критериев правильного выбора.

Критерии выбора автоматических выключателей

Автоматические выключатели рассчитываются и выбираются:
• по условиям защиты от перегрузок;
• по типу время-токовой характеристики;
• по режиму короткого замыкания;
• по селективности;

Выбор АВ по условиям защиты от перегрузок

Автоматические выключатели имеют следующие виды защиты — тепловая, электромагнитная или комбинированная (тепловая и электромагнитная). В соответствии с СП31-110–2003 во внутренних сетях жилых зданий, как правило, следует применять автоматические выключатели с комбинированными расцепителями.
Для защиты от перегрузок предназначена тепловая защита. Параметром, определяющем ток срабатывания теплового расцепителя, является номинальный ток автоматического выключателя.
Рабочая характеристика автоматического выключателя должна отвечать условиям:

Iр.max ≤ Iн.а ≤ Iд.н , (1)

где Iд.н — предельно допустимый номинальный ток нагрузки проводника при расчетной температуре, А;
Iр.max – максимальный расчетный ток нагрузки, А.
Iн.а — номинальный ток автоматического выключателя, защищающего проводник, А

Пример 1 . Выберем вводной автомат по защите от перегрузок.
Расчетные данные:
• максимальный расчетный ток на вводе Iр.max = 27,5 А;
• марка кабеля ВВГнг 3х10;

ПУЭ изд.7, табл.1.3.4. Кабель ВВГнг 3х10 выдерживает при расчетной температуре длительный номинальный ток, равный 50А. Это значение тока совпадает со стандартным значением номинальных токов выключателей. Поэтому в соответствие с условием (1) выбираем номинальный ток автоматического выключателя, равным 50А. Для вводного автомата предварительно выбираем ВА47-29 D50.

Пример 2. Выберем автоматический выключатель для групповой розеточной сети.
Дано:
• максимальный расчетный ток розеточной сети Iр.max = 6,4 А;
• марка кабеля ВВГнг 3х2,5;

Смотрим ПУЭ, табл. 1.3.4. Сечению кабеля 3х2,5 соответствует допустимый длительный ток нагрузки Iр.max = 21 А. В соответствии с условием (1) выбираем (в меньшую сторону) ближайшее стандартное значение номинального тока выключателя Iн.а = 20 А.
Для розеточной сети выбираем ВА47-29 С20.

Время отключения теплового расцепителя зависит от значения тока перегрузки и время-токовой характеристики автоматического выключателя.

Время-токовая характеристика покозана на рис.1. Рассмотрим ее внимательно:

Рис.1
• характеристика комбинированного расцепителя имеет две ступени. Участок характеристики с плавной зависимостью времени срабатывания выключателя от тока отвечает за тепловую защиту. Участок справа (мгновенное расцепление) характеризует работу выключателя в режиме короткого замыкания.
• время-токовая характеристика состоит из двух линий. Область графика, ограниченная этими двумя линиями, называется зоной срабатывания. Она определяется погрешностью теплового и электромагнитного расцепителей, погрешностью уставок, температурными условиями.
• верхний участок характеристики не пересекается с осью времени. Это означает, что тепловая защита надежно срабатывает лишь при токе нагрузки, превышающем номинальный ток выключателя.

Делаем выводы:
• время срабатывания тепловой защиты обратно пропорционально току перегрузки.
Действительно, если при кратности номинального тока, равной 2 тепловой расцепитель может сработать в интервале времени от 15сек. до 2минут, то при кратности 1,5 в интервале времени от 1мин. до 40мин.
• для надежного срабатывания теплового расцепителя требуется ток, превышающий номинальный ток автоматического выключателя (согласно ГОСТ Р 50571.5-94 его практически принимают равным току срабатывания при заданном времени срабатывания для автоматических выключателей).

Время-токовая характеристика – это кривая, построенная в координатах тока и времени и отражающая взаимосвязь этих параметров в определенных условиях эксплуатации. Международный стандарт МЭК 60898–95 определяет три типа характеристик мгновенного расцепления: В, С и D. Автоматические выключатели российских производителей выпускаются по ГОСТ Р 50345, который полностью соответствует МЭК 60898–95.
На рис.2 представлены все три типа время-токовых характеристик:

Читайте так же:
Принцип установки проходного выключателя

Рис.2
Здесь на вертикальной шкале — время срабатывания автоматического выключателя в секундах, а на горизонтальной шкале – отношение тока нагрузки к номинальному току автоматического выключателя. На графиках видно, что области срабатывания выключателей с характеристиками В, С и D сдвинуты по оси токов.

Диапазоны мгновенного расцепления выключателя в зависимости от кратности сверхтока по отношению к номинальному Iн.а приведены ниже:

Тип время-токовой характеристики Диапазон кратности I/Iн.а
В от 3 до 5
С от 5 до 10
D от 10 до 14

Выбор автоматических выключателей по типу защитных характеристик производится, исходя из характера нагрузки. В электрических сетях жилых зданий в основном используются автоматические выключатели с характеристиками типов В и С. В электроустановках, где нагрузка носит индуктивный характер и имеют место значительные пусковые токи, нужно использовать выключатели с расцеплением типа D.

В соответствие с табл. 1.7.1 расчетное время отключения не превышает допустимого значения (0,21 сек. < 0,4 сек.).
Таким образом, вводной автоматический выключатель по режиму КЗ выбран правильно.

Пример 4 . Проверим автомат для групповой розеточной сети на соответствие расчетным токам КЗ и допустимому времени защитного отключения.
Дано:
• групповой автомат ВА47-29 С20 с отключающей способностью 4,5кА;
• расчетный ток КЗ в конце линии 1,0 кА
• марка кабеля ВВГнг 3х2,5

Отключающая способность выбранного автомата соответствует расчетному току КЗ.
Время отключения тока КЗ = 1,0 кА определим по формуле:

√t = КS/I ; t =(КS/I)2 = (115∙2,5/1000)2 = 0,1 сек.

Для уровней А и Б характерны следующие особенности:
• повышенные требования к бесперебойности электроснабжения, так как ложное срабатывание аппарата на этих уровнях приводит к отключению большого числа потребителей;
• относительно высокие значения токов короткого замыкания в силу близости к источнику питания;
• большие номинальные токи, так как вся нагрузка нижерасположенной сети питается от этих секций.

Между аппаратами на ГРЩ и нижестоящими аппаратами наиболее часто используется временная селективность. Этот вид селективности обеспечивается за счет смещения или сдвига времятоковых характеристик последовательно расположенных автоматических выключателей по оси времени (см. рис. 4).

Рис. 4. Временная селективность

Уровень В. Конечное распределение
Основными требованиями этого уровня, как правило, являются обеспечение эффективного токоограничения и электробезопасность (т.к. аппараты этого уровня наиболее часто защищают непосредственно конечного потребителя). Поэтому на этом уровне применяются модульные токоограничивающие автоматические выключатели.

Этот случай, когда рассматриваемая пара автоматических выключателей относится к токоограничивающим, является наиболее сложным видом координации защитных аппаратов.
Поэтому координация токоограничивающих аппаратов согласно МЭК 60947.2 (ГОСТ 50030.2) может быть гарантирована только производителем, который обязан проводить испытания и подтверждать таким образом этот тип координации. Результатом этих испытаний и гарантией обеспечения селективности между токоограничивающими аппаратами являются специальные таблицы селективности, которые имеются в каталогах фирм-производителей оборудования. Такие таблицы разработаны для профессиональных серий защитных аппаратов.

Кроме рассмотренной временной селективности, еще есть следующие виды селективности :
• токовая селективность, которая предполагает смещение или разнесение время-токовых характеристик последовательно расположенных защит по оси тока;
• зонная или логическая селективность — реализуется между двумя аппаратами защиты, объединенными специальным каналом связи. Когда расположенный ниже аппарат обнаруживает повреждение, он посылает сигнал вышестоящему выключателю, который начинает отсчет выдержки времени. Если за это время расположенный ниже выключатель не в состоянии отключить возникшее повреждение, то срабатывает выключатель, расположенный выше.

Селективность по току обеспечивается путем задания различных уставок автоматических выключателей (максимальной токовой отсечки). Более высокие уставки имеют автоматические выключатели на стороне питания. Эти решения приемлемы для уровней А (ГРЩ) и уровня Б (вторичное распределение) системы электроснабжения, т. е. для больших автоматов, расцепители которых всегда можно подстроить. При конечном распределении электроэнергии (уровень В), где главным образом используются модульные токоограничивающие автоматы (бюджетные серии), селективность не обеспечивается или возможна только частичная селективность.
Например, в бытовом жилом секторе токи КЗ на вводе в дом и у самого удаленного потребителя будут отличаться незначительно (сети, как правило, короткие). При токах КЗ от 1000 до 3000 А, характерных для таких сетей, модульные автоматические выключатели в аварийной групповой сети и на вводе будут срабатывать практически одновременно. Чтобы этого не происходило, можно установить на вводе вместо вводного автомата выключатель нагрузки. Сделать это несложно, поскольку малогабаритных разъединителей нагрузки с установкой на дин-рейку на рынке предостаточно. В этом случае при КЗ будет отключаться только аварийная групповая линия.

Читайте так же:
Установка узо или автоматические выключатели

При перегрузках с елективную работу автоматических выключателей обеспечить просто. Для этого достаточно, чтобы номинальный ток автомата со стороны питания был больше номинального тока автоматического выключателя со стороны потребителей.

Похожие статьи:
1. Автоматические выключатели
2. Почему не работает выключатель?
3. Что делать, если автоматический выключатель отключает нагрузку?
4. Как сбросить сработавший выключатель?

Если статья Вам понравилась и Вы цените вложенные в этот проект усилия – у Вас есть возможность внести посильный вклад в развитие сайта на странице «Поддержка проекта».

Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома» . Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.

Таблица уставок для автоматического выключателя

При проведении испытаний соблюдают следующие условия:
— выключатель устанавливают вертикально;
— испытуемый АВ отключается от сети;
— испытания проводят при частоте сети (50±5) Гц;

Выполнение испытаний срабатывания расцепителей
Собрать схему проверок срабатывания расцепителей АВ согласно с инструкцией изготовителя используемого нагрузочного устройства. Электромагнитный расцепитель срабатывает без выдержки времени. Комбинированный расцепитель должен сработать с обратнозависимой от тока выдержкой времени при перегрузке и без выдержки времени при коротких замыканиях. Ток уставки расцепителей не регулируют. В каждом полюсе автомата смонтирован свой тепловой элемент, воздействующий на общий расцепитель автомата. Чтобы убедиться в правильности действия всех тепловых элементов, необходимо проверить каждый из них в отдельности. При одновременной проверке большого количества автоматов испытание тепловых элементов по начальному току срабатывания нецелесообразно, т.к. на проверку каждого автомата затрачивается несколько часов. В связи с этим тепловые элементы рекомендуется проверять испытательным током, равным двух- и трехкратному номинальному току расцепителя при одновременной нагрузке испытательным током всех полюсов автоматов.
Если тепловой элемент не срабатывает, то автомат к эксплуатации не пригоден и дальнейшим испытаниям не подлежит. У всех тепловых элементов должны быть проверены тепловые характеристики при одновременной нагрузке испытательным током всех полюсов автомата. Для этого все полюса автомата соединяют последовательно. При проверке электромагнитных расцепителей, не имеющих тепловых элементов, автомат включают вручную и устанавливают такую величину испытательного тока, при которой автомат отключится. После отключения автомата ток снижают до нуля и в указанном порядке проверяют электромагнитные элементы в остальных полюсах автомата.
Время срабатывания автомата определяется по шкале секундомера испытательного оборудования. Времятоковые характеристики срабатывания расцепителей АВ должны соответствовать калибровкам и паспортным данным завода-изготовителя. Проверка срабатывания электромагнитных и тепловых расцепителей АВ в объеме 30%, из них 15% наиболее удаленных от ВРУ квартир. При несрабатывании 10% проверяемых АВ, производится проверка срабатывания всех 100% АВ.

Контроль точности результатов измерений
Контроль точности результатов измерений обеспечивается ежегодной поверкой приборов, применяемых для испытания АВ, в органах Госстандарта РФ. Приборы должны иметь действующие свидетельства о госповерке. Выполнение измерений прибором с просроченным сроком поверки не допускается.
Оформление результатов измерений
Результаты испытаний оформляются протоколом «Проверки автоматических выключателей напряжением до 1000В».
Требования к квалификации персонала
К выполнению измерений допускают лиц, прошедших специальное обучение и аттестацию с присвоением группы по электробезопасности не ниже III при работе в электроустановках до 1000 В, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000 В.
Проверка работоспособности АВ производится по распоряжению только квалифицированным персоналом в составе бригады в количестве не менее 2 человек. Производитель работ должен иметь 5 разряд, члены бригады — не ниже 4 разряда.
Обеспечение безопасности при выполнении измерений.
При проверке работоспособности автоматических выключателей необходимо руководствоваться требованиями Межотраслевых правил по охране труда (правила безопасности) при эксплуатации электроустановок.
Испытания можно проводить только на отключенной электроустановке.
Испытания должны проводиться по распоряжению бригадой в составе не менее 2 человек.
Присоединение и отсоединение испытательного комплекта, нагрузочных концов необходимо производить при снятом испытательном напряжении;

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector